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Abstract

People have a love-hate relationship with artificial intelligence (AI) agents that must be addressed to suc-
cessfully implement human-AI teams. On the one hand, AI agents have demonstrated the potential to 
improve the accuracy and speed of human decisionmaking. On the other hand, the agents are known 
as “black boxes” that produce recommendations based on inputs and processes that are not clear to end 
users and that have been shown to alter the decisions these end users might otherwise have made. Existing 
research on this topic focuses on two areas: identifying factors in the human-machine relationship that 
influence decisionmaking and identifying strategies to improve the joint decisionmaking environment. 
This NIU Research Monograph uses an empirical approach to explore the need to account for the human 
element in developing a constructive human-AI relationship. Specifically, this work contributes to the 
field of human-AI interaction in two ways. First, two new factors influencing human decisionmaking in 
the AI-human team are identified: Self-Assessed Expertise (i.e., the human participants judge themselves as 
expert or nonexpert on the subject of interaction with the AI agent) and User Interface Settings (i.e., the for-
mat used by the AI agent to present recommendations). Second, this research aims to provide data-driven 
recommendations for improving the overall quality of decisionmaking of the human-AI team. Two studies 
have been conducted, demonstrating that both performance and task engagement improve when people 
are allowed to customize the level of AI output explainability—i.e., the detail they receive that helps them 
understand the solutions offered by the AI agent. Finally, implications and recommendations for both 
managers and researchers are presented that address the implementation of AI agents in analytic settings.
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Key Findings and 
Recommendations 

 

•	 Based on the author’s study of human-AI agent interaction in a controlled setting, self-assessed nonex-
perts are significantly more likely to accept an AI agent’s recommendations (i.e., user interface settings) 
when they are presented differently each time. A postexperiment survey measuring study participants’ 
reliance on AI agent’s recommendations suggests this acceptance is a conscious choice.

•	 Although experienced professionals are more accurate at cognitive tasks when working with AI agents 
that offer relatively more explainable recommendations, self-assessed human experts also display only 
grudging engagement with more sophisticated algorithms. This apparent aversion to the AI agent runs 
contrary to the literature’s Explainable AI (XAI) hypothesis, which states that designing AI agents 
to provide relatively more interpretable recommendations to their human counterparts improves 
human-AI interaction.  

•	 Experienced professionals are also more accurate when given a choice in explainability level, regard-
less of the explainability level chosen, and their dislike toward the AI agent declines. Although study 
participants self-reported greater reliance on the AI agent’s advice when receiving more explainable 
recommendations, they did not, in fact, rely more on the AI agent’s guidance. This suggests that allow-
ing people to choose their explainability level may be more important to maximizing joint human-AI 
accuracy than merely increasing explainability. 

•	 Managers and researchers seeking to introduce AI agents into existing workflows, therefore, should 
work to optimize both singular AI agent performance (i.e., proportion of false positives or negatives) 
and the joint performance of the human-AI team. Situational and environmental factors may influ-
ence not only end users’ acceptance of recommendations, but also the overall performance of end users 
working in concert with the AI agent. 

•	 Managers and researchers should consider developing sustainable approaches to identifying, measuring, 
and balancing the effects of individual differences (e.g., expertise level and subsequent reliance on the 
user interface) across analytic teams, as well as standardizing user interfaces for joint human-AI systems.
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Preface

In its overview of the strategic environment, the 2019 National Intelligence Strategy (NIS) calls out emerg-
ing technologies such as “artificial intelligence, automation, and high-performance computing … [as] eco-
nomically beneficial” and capable of enabling “new and improved military and intelligence capabilities for 
our adversaries.”1 The use of such technologies offers the U.S. Intelligence Community (IC) significant 
advantages relative to traditional analytic approaches that are both time and personnel intensive. For exam-
ple, AI does a better job synthesizing and making decisions based on vast amounts of data. AI is often more 
precise in its predictions and better able to conceptualize and act on decisions where success depends on 
statistical reasoning. It is faster.

But, as the 2019 NIS implies, not all that glitters is gold. Successful implementation of AI systems faces 
key challenges related to development and delivery, ethics, data sharing, and adoption. People tend toward 
irrational avoidance of or attraction to AI agents (i.e., human-AI reactance), and these behaviors can some-
times result in suboptimal joint human-AI decisionmaking.

While researchers have sought to mitigate these challenges by keeping a “human in the loop,” the attraction 
of low-cost and fast decisionmaking tools has enticed some competitors to increasingly cede decisionmak-
ing authority to AI-powered and autonomous weapon systems. To maintain the United States’ edge, U.S. 
decisionmakers have followed suit, and this pattern all but ensures an ever-shorter portion of the “loop” 
within which humans maintain control over AI counterparts.2 

Sustaining human oversight requires AI implementation approaches that identify not only factors influenc-
ing the joint human-AI decisionmaking process, but also ways to improve overall decisionmaking outcomes. 
This work seeks to improve understanding of some key factors and methods of human-AI decisionmaking. 
First, this monograph provides an overview of the relevant joint human-AI decisionmaking literature and 
highlights existing knowledge gaps. Second, it reports on the results of two sets of experiments that identify 
both additional drivers of human-AI reactance and approaches to improving joint human-AI decisionmak-
ing outcomes, adding to the growing body of literature that addresses these issues.  

This research is the culmination of a 12-month Research Fellowship at the National Intelligence Univer-
sity’s (NIU) Ann Caracristi Institute for Intelligence Research (CIIR). It was made possible through the 
support of CIIR staff and faculty, the author’s research committee, and the 2019-21 CIIR Fellows cohorts, 
as well as countless offices and individuals at the National Geospatial-Intelligence Agency (NGA) who 
consulted and collaborated on various elements of this effort.
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Background: The Troubled 
Relationship Between AI 
and Analysts

 
 

During the past several decades, the U.S. IC’s mission requirements have outpaced the Community’s capac-
ity to satisfy them. This mismatch results from the confluence of several factors including technological 
improvements facilitating collection of increasing amounts of data, a shifting competitive environment in 
which the United States must increasingly compete against near-peer nations, and a budget that has not 
grown proportionate to these demands. This trend is likely to continue, and the IC has increasingly turned 
to artificial intelligence (AI) systems as one approach to bridge the gap between requirements and capacity.3, 4

This approach is understandable. Researchers have long been aware that statistical algorithms, of which 
modern AI systems are comprised, can outperform their human counterparts in a variety of tasks. Early 
examples include Virginia Apgar’s (1953) proposed algorithm for evaluating the health of newborn infants 
and later Paul Meehl’s (1954) “Disturbing Little Book,” in which he showed a variety of other settings in 
which algorithmic statistical prediction consistently outperformed domain experts’ subjective predictions.5, 6

The next 70 years saw an explosion of interest in developing algorithms capable of predicting and classifying 
increasingly complex data. For example, research supporting current approaches such as neural networks 
and K-nearest neighbor algorithms began in the 1950s.7 However, because of the necessary computational 
intensity and oftentimes tremendous data requirements, many of these algorithms remained of primarily 
theoretical rather than practical interest. 

Recent advances in technology have made available vast amounts of low-cost data, cheap storage, and 
greater processing power. These trends are expected to continue and have opened the door to investment 
in AI-driven solutions. For perspective, U.S. Defense Department investment in AI has grown from $600 
million in FY2016 to $926 million in FY2020, and private sector investments in 2018 were estimated at 
nearly $8 billion.8, 9 However, although early work leveraging AI against real-world problems has yielded 
some success, the IC has yet to obtain its expected return on investment.

Specifically, conversations with IC analysts and managers who use these algorithms reveal a troubled rela-
tionship. Although some analysts willingly accept AI systems augmenting their workflows and even report 
enjoyment working with them, other analysts seem to dislike working with AI systems and eschew their use 
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whenever possible. These behaviors are consistent with algorithm appreciation and aversion, which describe 
the attraction or antipathy phenomena in which people irrationally overuse or underuse an AI system.10, 11 
This paper refers to such behaviors collectively as AI reactance. Such concerns and reactions are valid. In 
many instances AI systems have failed completely or have failed in such a way as to accentuate human 
biases.12 Left unchecked such AI systems may do a great deal of harm, and evidence of public concern sur-
rounding such potential failures is widespread. For example, consider the increasing market share of movies 
produced in which AI plays a key plot element (see Figure 1). In 2020, nearly 2.5 percent of all movies 
produced contained a key AI plot element, roughly double the percent in each of the five previous years.13 
Clearly, this is a topic that concerns the broader public.

Figure 1. Market Share of Films Produced Featuring AI
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Author’s figure based on the following source: “List of Artificial Intelligence Films,” Wikipedia, accessed on September 15, 2021, https://
en.wikipedia.org/wiki/List_of_artificial_intelligence_films.

Human-in-the-Loop Solutions
To mitigate some of these concerns, AI system proponents advocate for human-in-the-loop (HITL) designs. 
HITL refers to the idea that, although AI systems are capable of learning from human behavior and then 
acting autonomously, a human should oversee or work alongside the AI system and be the ultimate deci-
sionmaker. The challenge with ensuring human oversight is that people frequently embrace algorithm rec-
ommendations without realizing it. Consider, for example, autocompletion in Intellipedia’s main search bar.

In such instances, some human-in-the-loop algorithms have been programmed to learn from users and 
adjust their output based on perceived user preferences. Although these algorithms may be designed to 
“assist” in simple tasks and their features may be transparent to users, they are likely to influence preferences 

https://en.wikipedia.org/wiki/List_of_artificial_intelligence_films
https://en.wikipedia.org/wiki/List_of_artificial_intelligence_films
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and decisionmaking in ways that are difficult to predict and even subperceptual.14, 15  Thus, seemingly 
innocuous AI system recommendations have the potential to cascade into consequential decisionmaking 
biases without a user’s awareness. This poses a concern in two areas.

First, end users may be susceptible to overacceptance or rejection of AI systems as a function of situational 
factors or individual differences. The varying degrees of appreciation or aversion that different individuals 
have for applying AI to their decisionmaking process and other environmental factors—including, as will be 
seen in the studies reported in this monograph, ways in which an AI agent communicates its recommenda-
tions—introduce a potentially unbalanced, stochastic (i.e., random) element that should be accounted for 
in joint human-AI decisionmaking. In this monograph this type of behavior is referred to as AI reactance.

Second, AI systems may change the decisions made by the end users. For example, any given decisionmak-
ing outcome may be worsened or improved by joint human-AI teaming, making it necessary to understand 
and further research those factors that can improve decisionmaking. 

Monograph Overview
Based on these two possibilities, IC managers and AI systems developers should be concerned with two differ-
ent aspects of AI system integration into workplace settings. The author presents these in two research ques-
tions (RQs) and explores them in the context of the current literature and two sets of experimental surveys.

First (RQ1), how does the introduction of AI systems into the workplace influence human decisionmaking, 
and can tangible drivers of AI agent reactance be identified? 

Second (RQ2), how can joint human-AI decisionmaking outcomes be improved? 

The next section presents the research question in terms of the relevant literature, including a brief histori-
cal overview and the streams of research that contribute to the current investigation. Specifically, the author 
provides a short history and overview of algorithms generally and how they relate to modern notions of 
AI and its subordinate applications. This discussion is followed by a review of popular and academic per-
spectives on human-AI reactance, how human-in-the-loop designs influence both performance and AI 
receptivity, and the role that domain expertise plays in these considerations—all framed in the context of 
a tangible, environmental factor (User Interface Settings) and how that relates to end user domain expertise, 
which is an important consideration in the IC. Second, the author explores the need to identify factors 
that improve the overall quality of outcomes in joint human-AI decisionmaking. This discussion includes 
the contributions of the Explainable AI literature and the psychological benefits of Choice, which together 
form the theoretical foundation for the author’s second set of experiments. 

The third section provides an overview of the methodological approach used to investigate the research 
questions. The author’s research relies on an empirical survey design, and this section discusses generalized 
versions of both sets of experiments, including the decisionmaking environment and manipulated variables, 
as well as empirical design choices in the context of the approach used to analyze the resultant data.
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The fourth section presents the findings of the author’s two sets of experiments. In the first set, the results 
contribute to the algorithm reactance literature and specifically show that nonexperts are more susceptible 
to AI agent-provided recommendations when they have User Interface Settings that are inconsistent with 
their previous experience. The second set shows that allowing end users a choice in the explainability level 
of an AI agent’s recommendation (i.e., how much detail is provided on factors that determined the recom-
mendation) not only improves the accuracy of the end user’s decision but also improves human engage-
ment with the AI agent.

The fifth section discusses findings from both sets of experiments in terms of the existing literature on 
algorithm reactance and choice. The experiments’ results advance the argument for additional research into 
choice and for allowing end users to customize choice and additional human-AI touchpoints when partici-
pating in human-AI agent teams. The goal for this monograph is to highlight the importance of accounting 
for the human element in the human-AI relationship when implementing AI agents in IC settings. In par-
ticular, this paper seeks to investigate additional approaches to: identify and mitigate drivers of human-AI 
reactance (RQ1) and improve joint human-AI decisionmaking (RQ2).

In the sixth and final section of the monograph, implications from the results and follow-on discussion 
are presented along with recommendations that are accessible to IC managers and system developers. The 
author presents recommendations derived directly from this research, as well as recommendations for 
research extensions. Finally, the author concludes with the assertion that managers and developers should 
evaluate the success of AI implementation in terms of joint human-AI outcomes.
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Algorithms and AI

This section provides a brief history of algorithms and their contextual relevance to modern notions of AI. 
The relevant streams of research that inform this paper’s overall research question are discussed, and several 
hypotheses that drive the paper’s research objectives are offered.  

Algorithms: The Backstory
The algorithms that form the basis for modern artificial intelligence systems have been around for a long 
time. At their simplest level, algorithms are a set of instructions designed to produce a consistent result. 
Although they often involve mathematical processes, this need not always be the case. For perspective, the 
earliest examples of algorithms include a Sumerian system for division that emerged around 2500 BCE 
and a Babylonian approach to calculating inverses that was developed around 1600 BCE. Their early and 
widespread appeal was a function of their usefulness. Not only could nonexperts (provided they could read) 
use them to successfully execute relatively complex sets of instructions that would have been otherwise 
inaccessible, but they also improved the precision with which people executed those tasks.16

The appeal of algorithms extended into the modern era. In the 20th century, increases in wealth and sub-
sequent global demand for progressively technologically advanced goods led to the popularization of mass 
production and a growing need for the increased precision such algorithms provided.17 A need for con-
sistency and notions of fairness soon led to widespread applications of algorithms. These applications 
included such disparate fields as cryptography and law, and shortly thereafter began to evolve into the 
mechanical and automated computational approaches that are consistent with contemporary notions of 
algorithms and AI.18, 19, 20  

Algorithms as Recommendation Agents
The same consistency and precision that increased the appeal of algorithms in accounting, production, 
and other similarly process-driven disciplines also made them attractive recommendation systems for dis-
ciplines previously dominated by expert opinion. Virginia Apgar (1953) is credited with one of the earli-
est such findings in which she developed an algorithm to systematically assess the health of, and inform 
subsequent treatment for, infants in the moments immediately following childbirth. Her algorithm was 
straightforward: physicians would assign a 0, 1, or 2 under five health dimensions (heart rate, respiratory 
effort, reflex irritability, muscle tone, and color). Infants with higher scores tended to be healthy, whereas 
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those with lower scores tended to be unhealthy and require emergency intervention.21 As a testament to 
its success, versions of this algorithm are still recommended by both the American Academy of Pediatrics 
and the American College of Obstetricians and Gynecologists’ Committee on Obstetric Practice.22 Apgar’s 
work was later joined by that of Paul Meehl (1954), whose monograph investigating comparisons between 
algorithmic and expert prediction generalized these findings to a wide variety of situations including assess-
ment of future academic performance, as well as prediction of parole violations and criminal recidivism.23, 24

Since then, numerous other examples have been found in which simple algorithmic recommendation 
systems outperform their expert human counterparts. In 2002, researchers found evidence suggesting that 
algorithmically generated mortgage underwriting more accurately predicted mortgagee default than human 
underwriters. Furthermore, use of the algorithmically generated mortgage underwriting system not only 
generally increased borrower approval rates with lower default risk (resulting in increased revenue for the 
underwriting firm), but especially increased borrower approval rates for underserved populations resulting 
in improved social welfare.25 Similar findings have been found for other domains: AI systems used to screen 
résumés increased a firm’s selection of “nontraditional candidates” relative to human screeners, based on 
field data; Child Protective Services’ algorithms have been credited with doing a better job at identifying 
at-risk youth than human screeners; and, in an extension of Paul Meehl’s work, recent research shows that 
even simple linear models tend to outperform individual expert judgment.26, 27, 28

Nevertheless, many workers disliked working with early algorithms. Assembly line workers famously hated 
Henry Ford’s assembly line, preferring instead the challenge of working as a team to assemble a whole car 
at one station. Reasons cited included reduced satisfaction stemming from performing only one task and 
never seeing a completed product, monotony, and perceived loss of self-determination.29 In recent years, 
research into the fields of operations research, management, human factors, and other related disciplines 
has identified and mitigated many of the most common complaints against such simple algorithms, and 
adoption of simple algorithms is now widespread. Examples of successful adoption include contemporary 
cognates of the earliest algorithms such as multiplication and division tables, as well as more modern com-
putational processes such as internet search and vehicle navigation. At a basic level these are prescriptive 
calculations of an optimal path. At a more advanced level they are adaptive and offer recommendations 
based on dynamically changing factors.

Complex Algorithms
The development of complex algorithms proceeded quickly in the 20th century. Many of these advances 
were enabled by concurrent developments in computing which afforded cheaper data collection, storage, 
and processing power.30 Early integration of algorithms with computational approaches (e.g., Alan Turing’s 
“Turing Machine”) gave rise to greater interest in the ability of computers to execute increasingly complex sets 
of instructions that were adaptive to underlying data, and this culminated in the modern notion of AI that 
allows greater adaptational flexibility.31 Results from these early successes led to further demand and research 
into machine learning (ML), deep learning (DL), and other subsets of AI that were designed to accommodate 
increasingly adaptive clusters of processes depending on the underlying data encountered (see Figure 2).32 



Algorithms and AI  19

Thus, many of the “advanced” AI appli-
cations such as machine learning (ML), 
computer vision (CV), and natural lan-
guage processing (NLP) that drive mod-
ern prediction and recommendation 
systems have much earlier antecedents as 
statistical algorithms. For example, the 
K-nearest neighbors algorithm, which is 
a form of supervised ML, owes its exis-
tence to research conducted in the 1950s 
by Evelyn Fix, Joseph Hodges, and 
Thomas Cover.33, 34 And current advances 
in CV find their origin in a 1966 summer project in which researchers attached a camera to a computer and 
tried to get the computer to describe its surroundings.35 This paper uses the term AI to refer to the entire class 
of adaptive algorithms designed to classify, predict, or provide recommendations.

Figure 2. Relationships Among Algorithms, AI, and Subsets of AI
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However, many of these early advances remained primarily of theoretical interest. Early computers were 
expensive, and few had the processing power necessary to execute more advanced AI algorithms. Fur-
thermore, more sophisticated algorithms required vast amounts of data that were not readily available. 
Increased proliferation of computer systems beginning in the 1980s led to faster collection and cheaper 
storage of data, cheaper processing power, and increased demand for practical applications of otherwise 
esoteric statistical approaches.

Contrary to the reception of simple algorithms, more complex AI algorithms that promised significant 
benefits to end users did not enjoy the same widespread acceptance. Instead, they became something of an 
object of fascination (and horror)—rather than expecting to see them at work, people expected to see them 
in the cinema and on the bookstand, often playing the role of an antagonist, such as in the popular films 
The Terminator and The Matrix. 

Human-AI Reactance
Instances of aversion to complex algorithms also became an object of fascination to researchers in the social 
and business sciences. In much the same way that researchers in the early 20th century explored ways to over-
come the psychological challenges associated with the assembly line, it became necessary for researchers to 
investigate how to overcome psychological challenges associated with working with more advanced AI agents.

Notable examples of such research include work by U.S. economist and decision theorist Berkeley Dietvorst 
who has popularized the term “algorithm aversion,” which he defines as an irrational preference for nonalgo-
rithmic advice despite an algorithm’s proven effectiveness. Specifically, he has demonstrated that, when par-
ticipants in an experiment were shown both an algorithm and a human making a mistake, they were more 
likely to accept the recommendations from the human, and this effect persisted even when the algorithm 
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outperformed the human. Thus, participants were less forgiving of algorithmic mistakes than human mis-
takes, and this influenced their subsequent tendency to prefer human over algorithmic forecasts.36

Moreover, when given the choice between working with algorithmic vs. human advice, participants in a 
study undertaken at the University of Bath tended to overweight human advice. In a set of experiments, 
the researchers asked participants to forecast stock prices based on a provided information set. After the 
participants made their initial predictions, the researchers gave the participants advice from a human expert 
as well as a statistical forecasting algorithm, and then asked the participants to reevaluate their initial fore-
cast. Results showed that the participants subsequently overweighted advice from the human expert and 
underweighted advice from the algorithm. In a separate study, these researchers provided participants with 
advice from either two experts or two statistical algorithms; in this case, the participants weighted advice 
equally. Thus, when people had the choice to take advice from a human expert or a machine in a decision-
making task, they gave greater value to the human expert than to the machine. However, when not given 
the opportunity to choose between humans and algorithms, people weighted the advice equally, irrespec-
tive of whether it came from a human or algorithm.37

The literature also shows that people judge one another more harshly when they seek out algorithmic vs. 
human advice. Researchers at the University of Missouri designed an experiment in which participants 
read vignettes describing physicians who either did not seek advice, sought advice from a human expert, 
or sought advice from a computerized decision aid. Post-vignette surveys indicated that participants rated 
physicians who sought expert advice as significantly more positive than those who sought advice from a 
computerized aid or did not seek any advice at all. Thus, not only do people discriminate against algo-
rithms in their own decisionmaking, but this study also showed that external observers are more likely to 
think negatively about those who rely on algorithms in their own decisions. All of this leads to an overall 
decreased willingness to use algorithms or computerized decision aids, and hints that algorithm aversion 
may become more acute as the work setting becomes increasingly complex.38

Conversely, other evidence indicates that some people tend to prefer complex algorithmic suggestions over 
human advice. In a set of experiments designed by a team of U.S. management psychology scholars, in 
which participants were asked to make decisions based on recommendations from “black box” algorithms 
alongside human recommendations, the participants exhibited a strong preference for the algorithms. Task 
domains included forecasting and making judgments about a visual stimulus. The results of these find-
ings—an irrational preference for algorithmic over human advice—has been coined “algorithm appreci-
ation.”39 Such preferences are not widespread and appear to often depend on a third variable resulting in 
algorithmic preference as a heuristic. For example, a German experiment’s participants, who stated their 
belief that AI generally had greater intelligence than humans, were more likely to adopt algorithmic advice 
than those who believed humans were more intelligent.40 In another set of experiments by a U.S. psychol-
ogist who specializes in big data, the participants preferred algorithmic advice when the decisionmaking 
domain required an objective vs. subjective judgment.41

This monograph uses the term algorithm reactance as a superordinate term to refer to phenomena generally 
related to both algorithm aversion and algorithm appreciation. However, the superordinate term is also 
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defined more broadly than algorithm aversion and appreciation per se, and refers generally to the entire class 
of attraction or repulsion effects associated with introduction of an AI agent into a decisionmaking setting. 

Domain Expertise

The current research investigates the tangible drivers of AI algorithm reactance (RQ1), as well as ways to improve 
overall human AI interactions and joint decisionmaking (RQ2) in an IC setting. One relevant area in which the 
IC differs from other decisionmaking environments is in the type and specificity of employee domain expertise. 
Most research into joint human-AI decisionmaking relies on survey data from the public (e.g., Amazon MTurk 
or Prolific online panelists) or university students completing course lab requirements. While such respondents 
typically serve as a reasonable population from which to draw a sample, it is important to recognize that they 
are typically generalists and almost never experts in the domain in which they are being evaluated. 

Research in the expertise literature has shown that this may be a significant shortcoming. Notably, previous 
work has shown that not only do experts process information differently, but they also respond differ-
ently than nonexperts. For example, research based on in-depth interviews and participant observation has 
shown that participants, as their expertise levels increase, more often make choices based on recognition 
rather than analysis.42 This finding is further supported by empirical research evaluating the decision-
making patterns of grandmaster chess players. Not only are expert players able to more easily retain large 
amounts of information in their working memories—indeed, many such players have been known to play 
blindfolded so their perceptual access to the chess positions is limited to working memory—but they were 
able to do so much more quickly and accurately than nonexperts, suggesting reduced processing time.43, 44 

Furthermore, relative to nonexperts, experts’ knowledge and reasoning tended to be more crystallized as 
a function of repetitive exposure and ongoing consolidation. For example, research into the phenomenon 
of consolidation—or the way in which people convert short-term memories and skills into long-term 
ones—shows that, after only a few minutes of hand-eye coordination tasks, participants demonstrated 
increased precision when completing similar tasks. After returning the next day, the same participants per-
formed even better than they had at the end of the previous day. This suggests a cumulative effect in which 
long-term repetitive exposure to a set of tasks results in both short- and long-term gains in which greater 
expertise in a given domain depends on experience and memory. Thus, when solving a problem, people 
who consider themselves experts rely more on their own cognitive processes than on external cues. While 
nonexperts tend to reason their way through a problem, experts tend to recognize their way through one.

Note that IC intelligence analysts possess both formal education, such as academic degrees and certificates 
in which general knowledge and problem-solving skills are cultivated, and in-depth training specifically 
related to their chosen intelligence discipline. Furthermore, they are required to periodically complete 
additional training related to their disciplines, and (ideally) spend a majority of their days working in their 
assigned analytic domain. Thus, after only a few years, IC intelligence analysts possess both the formal (i.e., 
education, training, and on-the-job mentorship) as well as informal experience (i.e., thousands of hours of 
exposure to their analytic domain) necessary to invoke the cognitive processing patterns typified in both 
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crystallized and recognition-based decisionmaking characteristic of experts. Therefore, they may respond 
quite differently than nonexperts to external suggestions such as those from an AI agent.

Environmental Factor: User Interface Settings

The judgment and decisionmaking literature is replete with examples in which seemingly innocuous environ-
mental factors influence human decisionmaking. For example, in both laboratory and field experiments people 
have been shown to violate transitivity, or the premise that people should prefer the same options irrespective of 
irrelevant contextual circumstances. Such effects have been shown in settings involving gambles with different 
outcomes, hypothetical admissions decisions of college applicants, and even real-life brand preferences.45, 46, 47 
Interestingly, despite the apparent economic value of preference transitivity, such violating behavior is not only 
commonplace but even extends to field observations of the animal kingdom.48 Thus, the influence of contex-
tual or environmental factors on cognition in general, and decisionmaking in particular, can be significant.

These findings may come as no large surprise to most people. Few consider themselves immune from seem-
ingly irrelevant factors that can influence their decisionmaking. Parents are familiar with how a child’s bad 
mood in the morning can influence their driving behavior while commuting to work, and most people are 
familiar with how skipping a meal can influence a decision one might make later in the day. Undoubtedly, 
most people are aware of their “triggers” and try to guard against how these environmental factors may 
influence their behaviors—and most people are generally successful.

However, some environmental factors may not be as obvious and, therefore, may be more likely to influ-
ence decisionmaking. User interface settings on a computer or decision support system is an example of 
one such area. Research considering this area is not new, but awareness of the insidiousness of its influences 
may not yet be widespread. For example, human factors research into the design and functionality of user 
interface settings for the Xerox 8010 personal computer resulted in design choices regarding the optimal 
number of buttons on the pointing device, the meanings for the buttons in the text-selection process, and 
the best icons to show users on the screen.49 Nevertheless, instances abound in which failures to account for 
user interface design and other seemingly innocuous environmental factors result in inadvertent outcomes. 
In one such example, a poorly designed user interface resulted in a physician over-ordering medication 
from the Computerized Physician Order Entry system resulting in a medication overdose.50

In the IC, algorithms and software are commonly designed in-house. This is a function of the difficulty in secur-
ing approval for additions to software whitelists and of the need for highly idiosyncratic real-world applications, 
which may be classified. The inability to rely on widely available, well-tested, and documented commercial 
software means IC managers and developers shoulder the burden not only for developing in-house algorithms 
and software but also for minimizing the influence of extraneous environmental factors on end users as well. 

Although most users probably can adapt to long-term influences generated by design missteps involving 
user interface settings, some environments and types of work may preclude the opportunity for people to 
successfully adapt. Over time, people have demonstrated successful adaptation to a wide variety of phe-
nomena including shock in an experimental setting, loss of vision, lotteries, and perceptual judgments 
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such as customer satisfaction and happiness.51, 52, 53, 54 In addition, people who work on the same computer 
system each day can individualize and standardize their user interface settings experience. In other environ-
ments, however, such as operations centers, employees routinely switch computers depending on factors 
including shift assignments, tasks, and mission requirements. These employees may work with systems 
with different user interface settings under time constraints that do not allow them to adapt. 

Furthermore, in these less adaptive settings, employees are often on temporary assignment and vary widely 
in both their expertise and previous experiences. Recall that experts have crystallized knowledge and “rec-
ognize” rather than “reason” their way through decisionmaking, whereas nonexperts behave in the opposite 
manner. In a setting where both experts and nonexperts encounter user interface settings that are either 
congruent or incongruent from their previous experience, experts probably will continue to make decisions 
consistent with their established decisionmaking approach. That is, experts will be unaffected by any differ-
ences that changes to the user interface settings may induce. On the other hand, nonexperts probably will be 
influenced by the differences in user interface settings, as a function of their increased likelihood to “reason” 
their way through the decisionmaking process. Therefore, 

Hypothesis 1 (H1): Experts will be less susceptible than nonexperts to deviations in User Interface Settings.

Human-in-the-Loop Hybrid Systems

As noted above in the background section, decreasing technology costs have resulted in significant increases 
in the amount of data the IC collects and then must sift through and evaluate. This torrent of information 
has widened the gap between mission requirements and human analytic capacity. AI agents offer the ability 
to process large volumes of data in environments in which the growth in data collection rate outpaces the 
growth in human analytic capability.

Returning to an earlier IC work setting example, one way in which AI is employed in the IC is to augment 
human analytic efforts in time dominant work environments such as operations centers or watch floors. 
Here, the goal is to generate a “first look” assessment of data before it is evaluated by analysts. This “first 
look” approach allows for timely triaging of the vast amount of data that is collected by various platforms, 
followed by further analysis as necessary. 

Project Maven is one such example. The genesis of this Department of Defense program was to assist 
in processing the vast amount of full-motion video (FMV) of Islamic State militants in Iraq and Syria 
collected by various intelligence, surveillance, and reconnaissance (ISR) platforms. Following collection, 
an algorithm analyzes the data to detect objects or events modeled from a predetermined set. When the 
algorithm detects a target object, it flags the record, provides an assessment, and refers it for further human 
analysis and decisionmaking. The goal for the program is to allow AI agents and humans to work together 
“symbiotically to increase the ability of weapon systems to detect objects.”55 

There is widespread appeal in such human-in-the-loop hybrid systems, which employ the concept of ensur-
ing that AI agents are not independent decisionmakers but must also include a human in the decisionmaking 
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process. Although AI-powered weapon systems are a necessary component of the U.S. defense strategy’s 
goal to maintain a competitive edge with near-peer competitors, there has long been a cultural aversion to 
autonomous weapon systems. Such systems conjure images of killer robots and Skynet—the homicidal AI 
system from the Terminator movies.56 And this concern is not entirely unfounded. Unchecked, AI-based 
systems have been shown to perpetuate biases resulting in racist, sexist, or even classist employment-related 
decisions.57, 58, 59 AI-powered systems have also optimized protection of human life at the expense of non-
human life,60 but one can imagine a world in which they optimize some other variable at the expense of 
human life and dignity. Simply adding a human-in-the-loop, however, has been shown to improve some 
of these outcomes by increasing human salience toward the bias and even to improve AI processing time 
and accuracy by allowing human heuristics to effectively reduce the size of the decision search space.61, 62 

Nevertheless, the question remains: If, as hypothesized above (H1), the introduction of an AI agent can 
influence human decisionmaking differently depending on individual differences and environmental fac-
tors, and if the addition of humans into the AI decisionmaking process influences the AI agent’s deci-
sionmaking, how do these two elements interact? Furthermore, what are some of the ways in which joint 
human-AI decisionmaking can be improved? 

Explainable AI (XAI)

A current effort underway to improve joint human-AI interaction is explainable AI (XAI). Broadly, in order 
to improve human adoption of human-AI collaboration, XAI seeks to reduce the complexity that humans 
perceive in the recommendations offered by AI agents. XAI does so by designing AI agents that provide 
recommendations to their human counterparts that are relatively more interpretable.63 For example, a 
recommendation that is not explainable may simply include the recommendation or conclusion based on 
the underlying dataset. However, a recommendation that is explainable may also provide the reasoning or 
“show the work” behind the conclusion. 

Current approaches to improving explainability include four principles, as laid out by the National Insti-
tute of Standards and Technology: Explanation, Meaningful, Explanation Accuracy, and Knowledge Lim-
its. AI agent recommendations should provide accompanying evidence on which a decision was based 
(Explanation), the explanation should be understandable to end users (Meaningful), it should reflect the 
agent’s decision processes (Explanation Accuracy), and the agent should provide recommendations only for 
situations for which it was designed (Knowledge Limits).64

Note that how one defines “explainable” may vary greatly depending on personal preference, mission, or the 
cultural environment. For example, to extend the example provided above, developers might provide a link 
near the output or results of an AI agent’s recommendation that users can click to learn more about the pro-
cesses contributing to the conclusion. Or developers might provide an extensive set of output that provides 
all of the background information users might need to understand the AI agent’s decisionmaking processes. 

As previously discussed, research has shown a significant amount of variance in how people behave when 
interacting with AI agents. Some people irrationally prefer to work with AI agents, whereas others eschew 
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their use. Environmental and psychological factors also may influence cognitive processes and thus human 
interactions with an AI agent and subsequent decisionmaking. Because the use of algorithms such as AI 
agents has been shown to generally improve overall decisionmaking, however, any gain in usage is pre-
ferred.65 And following XAI procedures should foster this gain by mitigating the natural distrust of AI 
agents that some people have, since providing more interpretable reasoning with AI agent recommenda-
tions has been shown to increase reported trust in the algorithm and lead to increased usage.66, 67 

Based on this reasoning, the following additional hypotheses can be offered: AI agent recommendations 
framed with a High Explainability recommendation will increase task engagement, humans will subsequently 
rely on the AI agent more (Actual AI Reliance), and this greater reliance will result in increased overall quality 
of joint human-AI decisionmaking. Thus, the hypotheses to be tested in the author’s research study include:

H2: A High (Low) Explainability recommendation from an AI agent will result in increased (decreased) 
accuracy.

H3a: Participants will perceive they rely on the AI agent more (less) in the High (Low) Explainability 
condition.

H3b: Participants will actively rely on the AI agent more (less) in the High (Low) Explainability condition.

H4: A High (Low) Explainability recommendation from an AI agent will result in more (less) task 
engagement.

Finally, because XAI has been shown to improve human trust in AI agents, people may exhibit less aversion 
toward the AI agent after interacting with it. Therefore, a fifth hypothesis can be added to the research study:

H5: A High (Low) Explainability recommendation from an AI agent will result in less (more) dislike 
toward the AI agent.

Recent efforts to explore and implement XAI systems in the IC have met with relative success, suggest-
ing support for some of these hypotheses. For example, in 2016 DARPA launched an XAI program with 
the goals of creating AI models with more interpretable recommendations and subsequently fostering 
improved trust in the human-AI interaction.68 And, across industry, various companies are offering services 
designed to augment existing AI agent services with XAI.69 

However, even the best efforts to improve explainability may not be sufficient to meet end user needs for 
more complex deep learning algorithms. As described above, the most complex AI algorithms adapt to the 
underlying data in much the same way that a human is able to adapt routines to fit changing circumstances. 
For this reason, such algorithms are incredibly powerful and are sought after by mission owners seeking to 
emulate human decisionmaking, and they are used in both government and industry applications such as 
computer vision (CV), natural language processing (NLP), and generative adversarial networks (GAN). 
These algorithms provide significant benefit in the areas of feature detection, distillation of textual data for 
processing and reporting, and identification and generation of deepfake pictures and video, respectively. 
However, their underlying processes are also very complex. They have been characterized as explanatory 
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“black boxes” because an explanation of how they have reconfigured to evaluate the underlying data may 
not be intuitively accessible to even those who designed the algorithm. Ironically, in such cases the benefits 
of more complex algorithms may be abandoned in favor of simpler ones. Additional tools may be needed 
to improve end user acceptance of AI systems.

The Power of Choice

The literature review further suggests that, in addition to Explainability under the XAI thesis, allowing end 
users a Choice in how they receive AI agent recommendations may also play an influential role in whether 
they accept AI agent recommendations. Because allowing Choice may also play a significant role in decision 
accuracy and task engagement, it may serve as an important tool in the algorithm developer’s toolkit, in 
addition to Explainability.70

Choice has been shown to be an operant factor in a number of decisionmaking contexts. For example, a 
study to evaluate the relative benefits of allowing examinees to select their own test items from a bank of 
similar test problems revealed that, when participants were given a choice of test items, test validity was 
enhanced by reducing response variance. Notably, the test items were nearly identical and differences in the 
actually chosen test items were nominal. Furthermore, participants preferred the test items they selected 
and actually performed more accurately—subsequently receiving higher scores.71

In an anagram task, when children were allowed a choice in the type of anagrams they would tackle, they 
solved significantly more anagrams than did children who were not allowed a choice. Moreover, those given 
a choice demonstrated significantly more intrinsic motivation. Interestingly, cultural differences (another 
environmental factor) were found to play a significant interactive role in performance and engagement as 
well, suggesting the relative influence of Choice on performance and engagement may be both environmen-
tally determined and a learned behavior.72

And in an adversarial bargaining setting in which participants were asked to reflect on either their own 
choice options or those of their competitors, negotiators primed with a choice mindset perceived greater 
room for negotiation and were more willing to persist in negotiation than those not primed with a choice 
mindset—outcomes that are generally considered positive in this decisionmaking domain. Notably, in this 
set of U.S.-China business management studies, participants’ choice options were not actually manipu-
lated, but rather perception of the salience of choice was manipulated through a choice mindset prime.73

These findings are consistent with popular belief as well. Tag lines such as “don’t give others power over 
your life” and “follow your values” abound in the popular business literature.74 Thus, not only does a sig-
nificant body of research support the idea that allowing people a choice is beneficial, but choice may be an 
expectation. 

This monograph posits that many of the same improvements in task engagement and performance found 
associated with other task domains (e.g., bargaining, anagram completion, and test taking) may also 
translate to human receipt of recommendations from an AI agent. In particular, this paper hypothesizes 
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that providing a choice of recommendation output format (i.e., High vs. Low Explainability) to select 
study participants will result in their increased task engagement relative to the engagement of those 
study participants who did not receive a choice. Therefore, the following hypotheses are added to those 
already introduced:

H6: Allowing participants a choice (no choice) in Explainability Level format will result in increased 
(decreased) task engagement.

Furthermore, consistent with the choice literature and the linkage between engagement and performance, 
people may perform better and exhibit less dislike for working with the AI agent when offered a choice vs. 
no choice:

H7: Allowing participants a choice (no choice) in Explainability Level format will result in increased 
(decreased) accuracy.

H8: Allowing participants a choice (no choice) in Explainability Level format will result in decreased 
(increased) dislike for working with an AI agent irrespective of Explainability level.

The next section outlines the methodological approach used to address the above hypotheses on human-AI 
teaming (see Table 1). In particular, two sets of experiments are outlined. The first set of experiments 
investigates how an environmental factor, User Interface Settings, affects the extent to which people of 
varying degrees of domain expertise are influenced by the AI agent’s recommendation. The second set of 
experiments considers not just influence effects but also explores an approach to improve joint human-AI 
decisionmaking. In particular, the effect of Choice on Explainability Level is investigated.

Table 1: Consolidated List of Hypotheses for Two Research Studies on Human-AI Teams

Study Set 1

H1 Experts will be less susceptible than nonexperts to deviations in User Interface Settings.

Study Set 2

H2 A High (Low) Explainability recommendation from an AI agent will result in increased (decreased) accuracy. 

H3a Participants will perceive they rely on the AI agent more (less) in the High (Low) Explainability condition.

H3b Participants will actively rely on the AI agent more (less) in the High (Low) Explainability condition. 

H4 A High (Low) Explainability recommendation from an AI agent will result in more (less) task engagement. 

H5 A High (Low) Explainability recommendation from an AI agent will result in less (more) dislike toward the  
AI agent. 

H6 Allowing participants a choice (no choice) in Explainability Level format will result in increased (decreased) 
task engagement. 

H7 Allowing participants a choice (no choice) in Explainability Level format will result in increased (decreased) 
accuracy.

H8 Allowing participants a choice (no choice) in Explainability Level format will result in decreased (increased) 
dislike for working with an AI agent irrespective of Explainability level.
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Research Methodology: 
Understanding Human-AI 
Reactance and Team Performance

 
 

Study Set 1: Human-AI Reactance
The first set of studies of human-AI interaction—focused on human-AI reactance, or human avoidance of 
(attraction to) AI agents—considers a psychological factor, Self-Assessed Expertise (i.e., human participants 
judge themselves as expert or nonexpert on the subject of interaction with the AI agent), and an environ-
mental variable, User Interface Settings (i.e., the format used by the AI agent to present recommendations). 
The overall goal is to investigate how Self-Assessed Expertise interacts with User Interface Settings to under-
stand whether individual differences in a psychological factor may influence human receptivity to AI agent 
recommendations when differences in an environmental variable are introduced. To this end, this study set 
manipulates participant Self-Assessed Expertise and evaluates how two different levels of this variable interact 
with two different levels of User Interface Settings to influence human-AI decisionmaking. 

To accomplish this, a decisionmaking task was designed to serve as an analog for intelligence analysts decid-
ing whether to accept an intelligence product based on the recommendation of an AI agent. Specifically, 
participants were asked to play the role of film studio executives deciding whether to produce a film based 
on elements presented in a (fake) film poster. In this study set, the participants’ goal was to make decisions 
to either “begin” or “cancel” film production consistent with what the majority of other respondents chose 
(i.e., produce film posters that were popularly produced by other respondents or cancel production on film 
posters not popularly produced by other respondents). Note that the overall task relied on a domain generally 
familiar to most participants (films), but required them to make a specific decision in a domain with which 
they probably were unfamiliar (film production). In fact, while most participants indicated that they had 
watched a lot of films (“I watch a lot of films,” Likert Scale, 1-7, Disagree to Agree, M = 5.42, SD = 1.70), few 
participants reported any significant actual experience in film production (“I have worked in film produc-
tion,” Likert Scale, 1-7, Disagree to Agree, M = 1.32, SD = 1.09). This familiarity-unfamiliarity dichotomy 
was critical to the Self-Assessed Expertise manipulation and is further discussed below.

Following recruitment into the study, participants were provided introductions that included an overview of 
the task and incentive structure (see Appendix 1: Study Set 1, Overview of Task, Instructions, and Incentive 
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Structure). Participants were then provided a set of “tips” designed to help them understand which poster ele-
ments typically resulted in a film doing well postproduction (i.e., typically resulted in the film being popularly 
produced). Participants subsequently took a test that purportedly assessed their understanding of the “tips” 
(see Appendix 2: Study Set 1, Information Set/Tips), but also served as an attention check (see Appendix 3: 
Study Set 1, Attention Check), and a series of practice decision tasks purportedly constructed to prepare them 
for the actual decision tasks. In fact, the “tips” and attention check formed the core of the Self-Assessed Expertise 
manipulation, and the way in which the practice and actual decision tasks were presented formed the envi-
ronmental variable, User Interface Settings. A detailed description of both manipulations is provided below.

In the practice and actual decision tasks, participants were shown a set of film posters, each accompanied by 
an AI agent recommendation suggesting the film would be well or poorly received and were then asked to 
decide whether to “begin” or “cancel” production (see Appendix 4: Study Set 1, Sample AI Agent Recom-
mendations Following Tutorial). In the first experiment in this study set all recommendations were presented 
in terms of a positive valence (e.g., “recommend begin production”). However, to introduce a more realistic 
recommendation environment, a second experiment presented recommendations in terms of both positive 
and negative valences (e.g., “recommend begin production” as well as “recommend cancel production”). In 
both experiments, presentation order of the film posters was randomized to prevent order effects. Partici-
pant decisions were incentivized by providing them a fixed incentive for study participation ($2.00) and 
increasing or decreasing their earnings by $0.05 for each decision that was consistent (i.e., correct) or incon-
sistent (i.e., incorrect) with majority opinion. Majority opinion was established through a pretest. Thus, the 
experiments were incentive-compatible in that participant choices were consequential, and performance in a 
manner consistent (inconsistent) with majority opinion resulted in increased (decreased) earnings.

User Interface Settings Manipulation

The User Interface Settings variable was constructed by randomly assigning participants to receive AI agent 
recommendations that were either verbal (e.g., “Artemis suggests that it is likely this film would do well if 
you begin production”) or numeric (e.g., “Artemis suggests a 75-percent probability this film would do well 
if you begin production”), and presenting them in a pattern that was either congruent (e.g., verbal–verbal 
or numeric–numeric) or incongruent (e.g., verbal–numeric or numeric–verbal) across the practice and 
actual decision tasks. In this way, participants received an AI agent recommendation pattern in the actual 
decision task that simulated a User Interface Settings pattern that was either consistent (i.e., congruent) or 
inconsistent (i.e., incongruent) with their experience in the practice decision task.

Self-Assessed Expertise Manipulation

As mentioned briefly above, the Self-Assessed Expertise variable was constructed by randomly assigning 
participants to receive different information sets or “tips” that were either relevant or irrelevant to a sub-
sequent attention check (see Appendix 2: Study Set 1, Information Sets/Tips). Note that the “tips” were 
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designed not to influence participant decisions related to any one film poster. Recall that the task’s topic 
domain was selected to be generally familiar to participants (e.g., films) but the task itself was selected to be 
unfamiliar to participants (e.g., production decisions). This dichotomy allowed the experimenter to exploit 
the availability heuristic (i.e., the human tendency to mistake the ease or fluency with which a topic can be 
recalled with other assessments; here, Self-Assessed Expertise Level) so the participants’ performance in the 
comprehension test manipulated their relative level of Self-Assessed Expertise.75

In fact, after calibration in a pretest, participants who received “tips” that were relevant assessed themselves 
as having a higher level of Self-Assessed Expertise than those who received irrelevant tips, suggesting that 
the manipulation was successful. Participants assigned to be Experts not only reported relatively higher 
levels of Self-Assessed Expertise than those assigned to be Nonexperts, but their ratings in three Self-Assessed 
Expertise manipulation check questions also crossed the scale midpoint (see Appendix 5: Study Set 1, 
Self-Assessed Expertise), suggesting they perceived themselves as actual experts in the task.

Thus, all participants were randomly assigned into a 2 x 2 (User Interface Settings: Congruent/Incongruent 
and Self-Assessed Expertise: Expert/Nonexpert) between-subjects experimental design, in which all subjects 
were randomly assigned to balanced groups, and the User Interface Settings variable was counterbalanced 
to account for possible order effects in its subordinate factor (Presentation Mode). The primary dependent 
variable was Number of Decisions Accepting AI Recommendations in the film production choice task.

Note that this study set was designed to investigate factors that influence human decisionmaking when 
working as part of a human-AI team. A more thorough understanding of which factors may inadvertently 
influence individual-level analyst decisions is crucial for IC mission owners seeking to augment their exist-
ing human workforce with AI agents. Failure to account for these effects may lead to different decisionmak-
ing outcomes than would otherwise have been made. Note, however, that this study set was designed so 
there were no “right” or “wrong” answers per se—participants were simply asked to provide responses gen-
erally consistent with popular opinion. Although some decision environments involve ambiguous decisions 
like these, many analytic environments have relatively clear “right” and “wrong” answers. Furthermore, 
this study set was artificial because the sampling plan was set up with professional respondents from the 
public participating in a contrived decisionmaking setting (e.g., film production). Although most research 
generally shows that such studies tend to produce valid and generalizable results, some research does show 
that laboratory and field studies can produce dramatically different results.76, 77

To broaden this exploration of human-AI reactance, a second study set explored ways to improve the 
quality of joint human-machine decisionmaking. What current approaches can improve human-machine 
cooperation? What can managers do to improve actual decision-outcome quality for human-machine deci-
sionmaking teams? 

Understanding how an AI agent’s interactions might influence its human counterparts’ accuracy is critically 
important for managers seeking to implement human-machine teaming in their mission spaces. The next 
study set addresses these issues in the context of XAI principles, which propose that the way AI agents arrive 
at their recommendations should be understandable to their human counterparts.78 Thus, Study Set 2 will 
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manipulate Explainability Level (High vs. Low), Choice of Explainability Level (Choice vs. No Choice) and 
measure how well participants perform in a task (Accuracy), how much they rely on the AI agent (Actual AI 
Reliance), and their own level of awareness of their reliance on the AI agent (Self-Assessed Reliance).

Study Set 2: Human-AI Team Performance*

The second study set considers two different factors, discussed in the literature review, that may improve the 
overall performance of human-AI teaming: Explainability Level and Choice. The goal is to investigate how 
both Explainability Level, which is derived from the XAI thesis, and Choice impact decisionmaking processes 
and outcomes in a set of joint human-AI tasks. To this end, Study Set 2 includes two experiments that manip-
ulate Explainability Level and Choice to assess (1) how these factors independently influence decisionmaking 
and (2) how they interact with one another. The two experiments share a common experimental design, 
although some deviations from this design will be noted in the discussion of Experiments 1 and 2 below.

Common Experimental Design

Following recruitment into the study, participants were given instructions on the task purpose and their 
scope of responsibilities in the study. Generally, participants were asked to review either an image or a text 
document and to count experimenter-designated attributes within the document. Tasks involving images 
and text were selected based on their similarity to actual tasks performed by IC analysts. 

In the study instructions (see Appendix 7: Study Set 2, Experiment 1, Study Instructions), participants 
were told that during the task they would receive assistance from an AI agent using the “latest algorithms.” 
Specifically, the agent would perform the same task and generate a preferred solution using six different 
algorithms. The algorithmic output was artificial, although this was not known to participants. Further-
more, participants were told that, although everyone would receive the AI agent’s recommendation, the 
extent to which they used this recommendation in their own responses was a personal choice.

The experimenter then showed participants a sample of the user interface and allowed them to complete 
an example task. Participants were randomly assigned to receive a task orientation and example in which 
an AI agent recommendation was either in a Low Explainability format (i.e., the AI agent autonomously 
selected the preferred solution from the set of six algorithms; see Figure 3, Panel A) or in a High Explain-
ability format (i.e., the AI agent provided output from the set of six algorithms and allowed the participant 
to identify which of the six was preferred; see Figure 3, Panel B). 

Participants who received the AI recommendations in a High Explainability format also received a short 
orientation to the output and how to interpret it. Specifically, they were told they could identify the 

*  The author acknowledges the material support of Erik Hatfield (NGA) and Dain Thomsen (USAF) in both design of the 
experiment and collection of the data.
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preferred solution by comparing the results 
of each algorithmic model 1-6, based on 
Akaike Information Criterion (AIC)—a 
mathematical method that evaluates how 
well a model fits the data from which it was 
generated—and Bayesian Information Cri-
terion (BIC), which measures the trade-off 
between model fit and the model’s com-
plexity. Because the algorithm model with 
the lowest AIC and BIC values indicates 
best fit, that model generated the preferred 
solution (see Figure 3, Panel B, with the 
lowest AIC and BIC values highlighted in 
blue and the corresponding algorithmic 
model recommendation highlighted in 
green). Participants were then free to per-
form the task, accept the AI recommen-
dation as they saw fit, and provide their 
answers. After this orientation, partici-
pants performed a series of actual tasks. At 
the conclusion of these tasks, participants 
completed a short survey assessing behav-
ioral factors, and then were dismissed. 

Figure 3. Examples of Explainability Levels

Panel A: Low Explainability
Below, is an example of the type of image you will see.
Remember, in this study we wish to know how many four-door sedans you can find.

AI Assessment (Number of Four-Door Sedans): 4
Your Assessment (Number of Four-Door Sedans): ____

Panel B: High Explainability
Below, is an example of the type of image you will see.
Remember, in this study we wish to know how many four-door sedans you can find.

AI Assessment (Number of Four-Door Sedans): 

Determinants of the Logarithm of Vehicle Count

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

# of Vehicles 0.32 (0.15) 0.74 (0.26) 0.13 (0.03) 0.67 (0.22) 0.87 (0.31) 0.76 (0.27)

Length 0.55 (0.35) 0.78 (0.27) 0.87 (0.31) 0.33 (0.11) 0.81 (0.22) 0.97 (0.34)

Shadow Incidence 0.43 (0.12) 0.91 (0.37) 0.83 (0.19) 0.66 (0.42) 0.79 (0.15) 0.65 (0.38)

Angle (X) Incidence 0.87 (0.44) 0.38 (0.28) 0.86 (0.37) 0.28 (0.01) 0.18 (0.04) 0.07 (0.01)

Angle (Y) Incidence 0.75 (0.25) 0.01 (0.00) 0.15 (0.03) 0.43 (0.13) 0.77 (0.32) 0.31 (0.15)

Angle (Z) 0.23 (0.11) 0.31 (0.15) 0.33 (0.31) 0.45 (0.01) 0.65 (0.15) 0.83 (0.11)

Size 0.08 (0.01) 0.11 (0.05) 0.44 (0.12) 0.23 (0.11) 0.17 (0.03) 0.19 (0.13)

Shape 2L 2L 2L 2L 2L 2L

(-2 Res Log Likelihood) 3853 3824 4351 3421 3555 3422

AIC (Smaller is Better) 3543 3122 3129 3475 3659 3239

AICC (Smaller is Better) 3846 3827 3449 3495 3963 3227

BIC (Smaller is Better) 3727 3112 3447 3118 3927 3857

Null Model

Likelihood 0.000174 0.000182 0.000144 0.000973 0.000835 0.000145

Ratio Test

*SE in Parentheses

Estimates: Model 1: 7 Model 2: 4 Model 3: 26 Model 4: 8 Model 5: 6 Model 6: 24

Your Assessment (Number of Four-Door Sedans): ____

Source: “Parking lot of Restaurante Mar y Tierra Veleiros, Jalisco, Mexico,”  
Google Maps, accessed on March 14, 2021, https://www.google.com/maps/ 
@20.709417,-103.41092,45m/data=!3m1!1e3.

Accuracy was assessed by comparing par-
ticipant responses to known solutions and 
noting the number of deviations. Actual AI 
Reliance was measured by manipulating the 
AI agent’s output such that its recommen-
dations were stochastically determined fol-
lowing a uniform distribution with a mean 
equal to the task’s known solution. Thus, 
at an individual level, AI agent recommen-
dations were unrelated to the “correct” 
solutions and, therefore, could not bias 
sample-level results; however, at a sample 
level, participants received AI agent recom-
mendations that were statistically equiva-
lent to the correct answer. This enabled the 
experimenter to simultaneously analyze 
Accuracy at a sample level by calculating 

https://www.google.com/maps/@20.709417,-103.41092,45m/data=!3m1!1e3
https://www.google.com/maps/@20.709417,-103.41092,45m/data=!3m1!1e3
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how far participant solutions deviated from the known solutions, and Actual AI Reliance at an individual 
level by calculating how far participant solutions deviated from the AI agent-provided recommendation.† 
For both Accuracy and Actual AI Reliance, fewer deviations (i.e., smaller numbers) represented increased 
accuracy or reliance—with zero being a perfect score. Self-Assessed AI Reliance was measured in the post-
task survey using four Likert-scale survey items (see Appendix 8: Study Set 2, Self-Assessed AI Reliance).

Experiment 1: Explainability Level

Experiment 1’s objective was to understand the extent to which AI agent-based recommendation formats 
(i.e., Low Explainability vs. High Explainability) might influence the quality of participant decisionmak-
ing. This experiment employed an imagery-based task in which Actual Correctness served as a proxy measure 
for the quality of participant decisions. Specifically, participants were asked to count the number of four-
door sedans in a Google Earth satellite image (see Figure 3 for an example). The author hypothesized that 
participants who received an AI agent recommendation in a High Explainability format would be more 
engaged in the task (H4) and, therefore, more likely to rely on the AI agent’s recommendations (H3a-b), so 
that they would subsequently be more accurate than those who received an AI recommendation in a simple 
format (H2: see Table 1 for hypotheses list).

The task—counting the number of four-door sedans in a series of four satellite images—was designed to be dif-
ficult. The selected images were blurry, and they contained vehicles that looked like four-door sedans but may 
have been two-door sedans or hatchbacks. All images were from non-U.S. locations. To ensure participants 
did not mistake similar type vehicles as four-door sedans, participants were shown a set of similar vehicles con-
tained within the image, clarifying that the target type was a four-door sedan. Post-task measures revealed that 
participants generally rated the task as moderately difficult: MComplexity = 4.28, SDComplexity = 2.04, r = 0.76. Prior to 
study execution, “correct” solutions were determined through interrater agreement: two geospatial intelligence 
(GEOINT) analysts reviewed each image used in the study and counted the number of sedans. Raters achieved 
92.21 percent agreement and the remaining differences were resolved through discussion.

The overall study was a single-factor, mixed design in which AI Recommendation Complexity was between-
subjects. The dependent variables Accuracy, Actual AI Reliance, and Time were measured within-subjects on 
multiple occasions, and Self-Assessed AI Reliance and Dislike were measured once.

Experiment 2: Choice of Explainability Level  

Experiment 1 was designed to investigate the influence of the XAI thesis on task engagement, AI agent 
reliance (both perceived and actual), and subsequent performance accuracy in a GEOINT task. As noted in 

† A 500-cycle bootstrapped simulation of 5,000 records was used to validate that this approach would generate AI agent-
based recommendations that were uncorrelated (0.001), nearly completely random (0.95), and, therefore, orthogonal or 
unrelated to the known solutions, r(5000) = 0.001, p = 0.95. 
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the literature review, some situations may not allow greater explainability without also increasing complex-
ity—an outcome that may increase both participant dislike toward the AI agent and subsequent nonusage. 
Thus, the goal for Experiment 2 was to explore an additional, relatively easy-to-implement factor that 
might influence AI agent receptivity—allowing participants Choice in their Explainability Level.

To add Choice as a factor, Experiment 2’s instructions were redesigned so that all participants received an 
orientation to both the simple and complex recommendation formats, but only some participants were 
allowed to choose the type of recommendation format they would receive. All participants. therefore, 
were aware of the possibility of two different Explainability Levels (High and Low). Participants were then 
randomly assigned to have either a Choice or No Choice as to whether they would receive the recom-
mendation in Low or High Explainability Levels. Consistent with Experiment 1, the second experiment 
captured (either during or in a post-experiment survey) the following dependent variables: Accuracy, Actual 
AI Reliance, Perceived AI Reliance, Dislike, and Task Engagement. 

Experiment 2 also used a somewhat different task. Whereas Experiment 1 was an imagery-based task in 
which participants were asked to count four-door sedans, Experiment 2 was a text-based task in which 
participants were asked to read a passage and count the number of errors. Consistent with the sampling 
approach used in Experiment 1, the author recruited a sample of IC business analysts and editors who were 
familiar with the task domain.

Thus, Experiment 2 was a 2 x 2 (Choice: Choice or No Choice and Explainability Level: High vs. Low) 
mixed design, in which Choice and Explainability Level were between subjects. Accuracy, Actual AI Reliance, 
and Time were measured within subjects on four occasions, and Perceived Reliance and Dislike were mea-
sured once at the conclusion of the study.





FINDINGS: CHOICE OF ALGORITHM OUTPUT COMPLEXITY IMPROVES OVERALL HUMAN-AI TEAM COMPATIBILITY  37

Findings: Choice of Algorithm 
Output Complexity Improves 
Overall Human-AI Team 
Compatibility and Performance 

 

AI Recommendations Influence Nonexpert  
Decisionmaking More When the User Interface  
Is Unfamiliar (Study Set 1)
Consistent AI Agent Recommendations (Experiment 1)

The goal for Study Set 1, as noted in the previous section, was to investigate how participants of differing 
levels of expertise (Self-Assessed Expertise) responded to the introduction of an AI agent making recommen-
dations using either similar or different formats across occasions (User Interface Settings). To accomplish 
this, 103 online panelists were recruited from Amazon’s crowdsourcing marketplace, Mechanical Turk, and 
randomly assigned to the two levels of Self-Assessed Expertise (пExperts = 51; пNon-experts = 52) and to the two levels 
of User Interface Settings (пCongruent = 57; пIncongruent = 46). In this first experiment, for simplicity, all participants 
received AI agent recommendations that were positively valenced (i.e., “Begin Production”) rather than a 
mix of positively valenced and negatively valenced (i.e., “Cancel Production”) recommendations. A sum-
mary of Study Set 1 results relative to the hypothesis is offered below and is discussed in depth throughout 
the rest of this section.

Table 2: Summary of Study Set 1 Findings 

H1 Experts will be less susceptible than nonexperts to deviations in User 
Interface Settings.

Supported

Manipulation checks on the effectiveness of Self-assessed Expertise showed that the manipulations were suc-
cessful. A set of three Likert-scale items designed to measure self-assessed expertise revealed that participants 
assigned to the Expert condition (MExpert = 5.14, SDExpert = 0.08) rated themselves significantly more expert 
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in making production decisions for films than those assigned to the Nonexpert condition (MExpert = 1.60, 
SDExpert = 0.07), F(1, 101) = 1116.59, p < 0.001 (see Appendix 5: Study Set 1, Self-Assessed Expertise). 
Importantly, ratings by participants assigned as Experts crossed the scale midpoint, indicating they assessed 
their level of expertise in the target domain in actual vs. merely relative terms. Measures of participant per-
ceptions of User Interface Settings were not captured as these were environmental variables.

Before interpreting the results, the data were analyzed using a series of generalized linear models allowing for 
longitudinal binary responses (i.e., “Begin Production” or “Cancel Production”). Model estimation relied on 
maximum likelihood within SAS GLIMMIX (i.e., a statistical procedure that predicts population parameter 
values by quantifying the joint probability for predicting a given sample of data) to assess and select final 
models with the best distributional and variance-covariance matrix fits. The selected model predicted the 
number of positive production decisions, relying on a binary distribution with a logit link function (i.e., to 
keep the proportion of production decisions between 0 and 1), and the model also allowed random intercept 
variance, separate residual variances per occasion, and unstructured residual correlations for actual task out-
comes. To identify the simplest, most powerful statistical analysis for modeling the data, the author evaluated 
several models to account for patterns of nonnormality of data as well as how differences in data variance 
across measurement occasions might exhibit time-based dependence because of participants’ previous choices.  
A Poisson distribution, allowing for unstructured variance across measurement occasions, had the best 

fit. Note, outcome results are typically 
provided in “logits,” or log-odds units, 
which are not further discussed here 
(see Chapter 3 of Craig Enders’ Applied 
Missing Data Analysis for an excellent 
overview); however, for convenience the 
author has converted the results back to 
percentages.79

Figure 4. Number of Decisions Accepting AI Recommendation, 
Study Set 1, Experiment 1
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An Analysis of Variance (ANOVA) test, 
which determines statistical differences 
between the means of independent 
groups, was applied to the participant 
production decisions. This revealed a 
significant interaction between Self-
Assessed Expertise Level and User Inter-
face Settings. As can be seen in Figure 4, 
Nonexperts were significantly more likely 
than Experts to agree with the recom-
mendations from the AI agent when 

User Interface Settings were Incongruent rather than Congruent between the practice and actual tasks, F(1, 
515) = 4.01, p = 0.07 (see also Appendix 10: Study Set 1, Experiment 1, ANOVA Results (Agreements)). 
This is contrary to expectation because one would normally expect any incongruency between the practice 



and actual task to appear to be an error on the part of the algorithm, and previous research has shown that 
perceived errors reduce trust and subsequent use.80 

One possibility for these anomalous ANOVA test results may be the outcome of the AI agent recommen-
dations being presented in terms of only a positive valence (i.e., “this film would do well”). This was an 
intentional design choice to reduce response variance and improve the likelihood of detecting an effect. 
In real life, however, people are likely to receive AI agent recommendations with both positive and neg-
ative valences (i.e., “this film would do well” or “this film would not do well”). The consistent pattern of 
positively valenced recommendations may have encouraged participants who felt less confident in their 
decisions (e.g., Nonexperts whose confidence may have been manipulated by the Self-Assessed Expertise 
manipulation) to also be more likely to “Begin Production” every time. 

If the observed pattern of results was a function of the artificiality of recommendation valence, one would 
expect a balanced presentation of recommendations to attenuate the results pattern. Furthermore, if the 
pattern of results was a function of erosion of participant confidence because of the Self-Assessed Expertise 
manipulation, then participants assigned as Nonexperts should demonstrate reduced confidence consistent 
with the observed pattern. Both of these propositions were tested in Study Set 1’s second experiment.

Inconsistent AI Agent Recommendations (Experiment 2)

The goal of Experiment 2 was to replicate the results from Experiment 1, while extending the experimen-
tal design to be more realistic and conducting a mediation analysis to investigate the roles that reliance 
and confidence may have on the observed effect. In Experiment 1, as reported above, Nonexperts who 
received AI agent recommendations in an Incongruent format between the practice and actual tasks were 
significantly more likely to accept AI agent recommendations. This pattern of results was surprising, and 
the extent to which this may have been influenced by participant reliance on the AI agent, self-confidence 
levels, or the realism of the decisionmaking environment was unclear. 

To evaluate these possible influence factors, 157 online panelists were recruited from Amazon’s crowd-
sourcing marketplace, Mechanical Turk, and randomly assigned to the two levels of Self-Assessed Expertise 
(nExperts = 81; nNon-experts = 76) and to the two levels of User Interface Settings (nCongruent = 73; nIncongruent = 84). The 
experimental design was modified to allow the AI agent to provide both positively and negatively valenced 
recommendations, and the sequence in which these recommendations were presented was randomized 
to prevent order effects. Furthermore, measures were included to assess the degree to which participants 
actively relied on the AI agent recommendation (see Appendix 11: Study Set 1, Experiment 2, Reliance 
Measures and Mediation Results) and on their own self-confidence (see Appendix 12: Study Set 1, Exper-
iment 2, Self-Confidence Measures) in making their decisions.

As in Experiment 1, before interpreting the results, the data were analyzed using a series of generalized lin-
ear models allowing for longitudinal binary responses (i.e., “Begin Production” or “Cancel Production”). 
The same model (Poisson-distributed, unstructured variance across measurement occasions) remained the 
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best-fitting predictor for the number of 
positive production decisions.

ANOVA results of this second experi-
ment showed the observed pattern of par-
ticipant decisions generally conformed to 
those from Experiment 1 (see Figure 5). 
As expected, introduction of both posi-
tively and negatively valenced AI agent 
recommendations attenuated some of 
the observed differences in the results; 
however, Nonexperts continued to accept 
AI agent recommendations significantly 
more often when receiving User Interface 
Settings that were incongruent across the 
practice and actual tasks (see Appendix 
13: Study Set 1, Experiment 2, ANOVA 
Results (Agreements)). 

Figure 5. Number of Decisions Accepting AI Recommendation, 
Study Set 1, Experiment 2
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A mediated moderation analysis was performed to investigate the possibility that the observed pattern of 
results was a function of participants actively relying on the AI agent’s recommendation (i.e., reliance), as 
well as whether the Self-Assessed Expertise manipulation may have influenced participant self-confidence 
(i.e., confidence).81 Results indicated that the Self-Assessed Expertise x User Interface Settings interaction 
term was a significant predictor of reliance, B = 1.13, SE = 0.17, p < 0.001, and that reliance further pre-
dicted the number of AI recommendations accepted by participants, B = 0.09, SE = 0.03, p < 0.001. After 
including reliance in the mediated moderation model, the Self-Assessed Expertise x User Interface Settings 
interaction term was no longer a significant predictor of the number of AI recommendations accepted 
by participants, B = 0.10, SE = 0.06, p = 0.11, suggesting reliance fully mediated the observed pattern 
of results (see Appendix 11: Study Set 1, Experiment 2, Reliance Measures and Mediation Results). In 
contrast, when confidence was included in the model, the Self-Assessed Expertise x User Interface Settings 
interaction term remained significant but confidence was not significant, suggesting the latter was not a 
mediator. In other words, Nonexperts were motivated by reliance, not by confidence, and their reliance on 
the AI agent recommendation was a conscious choice, not influenced by the experimental setup.

Human-AI Team Performance (Study Set 2)
Explainability Level (Experiment 1)

Study Set 2, as described in the Research Methodology section, was designed to explore ways to improve 
the overall performance of human-AI teaming, with a focus on the factors of Explainability Level and 
Choice. The goal of Experiment 1 in this study set was to investigate the influence of the Explainable AI 



(XAI) thesis on participant task engagement, AI agent reliance (both actual and perceived), and subsequent 
performance accuracy when receiving AI agent recommendations in either a Low or High Explainability 
format. A summary of Study Set 2 results related to the hypotheses is offered below. Comprehensive anal-
yses of the results are further discussed throughout this section.

Table 3: Summary of Study Set 2 Findings

Study Set 2 Results

H2 A High (Low) Explainability recommendation from an AI agent will result in increased 
(decreased) accuracy. 

Supported

H3a Participants will perceive they rely on the AI agent more (less) in the High (Low) 
Explainability condition. 

Not supported: 
opposite pattern

H3b Participants will actively rely on the AI agent more (less) in the High (Low) 
Explainability condition. 

Not supported

H4 A High (Low) Explainability recommendation from an AI agent will result in more 
(less) task engagement. 

Not supported

H5 A High (Low) Explainability recommendation from an AI agent will result in less 
(more) dislike toward the AI agent. 

Supported

H6 Allowing participants a choice (no choice) in Explainability Level format will result in 
increased (decreased) task engagement. 

Supported

H7 Allowing participants a choice (no choice) in Explainability Level format will result in 
increased (decreased) accuracy. 

Supported

H8 Allowing participants a choice (no choice) in Explainability Level format will result in 
decreased (increased) disliking irrespective of Explainability level. 

Partially 
supported

To this end, 75 analysts with a GEOINT background were recruited to participate in an experiment in 
which they were asked to view a series of four satellite images and provide a count of the number of four-door 
sedans seen in these images. Participants were randomly assigned to receive AI recommendations in either 
a Low Explainability (n = 37) or High Explainability (n = 38) format, and a total of 47 participants com-
pleted the full study. Attrition was not significantly different between the assignment conditions, χ2 (0.75, 
n = 75) = 0.39. On average, participants were 37.77 years old (MAge = 37.77, SDAge = 10.61), held 8.16 years 
of imagery analyst experience (MExperience = 8.16, SDExperience = 7.28), self-reported as having relatively greater 
expertise on a seven-point, Likert scale item (Disagree to Agree, 1-7) measuring relative experience perform-
ing in GEOINT (“I am an experienced imagery/GEOINT analyst,” MSelfExpertise = 5.36, SDSelfExpertise = 1.79), 
and self-reported as 63.83 percent male and 36.17 percent female. Checks to measure the Explainability 
Level variable’s effectiveness showed it successfully manipulated participants’ self-evaluations of expertise. 
Furthermore, participants did not find the actual task more (p = 0.84) or less (p = 0.35) difficult across 
Explainability conditions.

Before interpreting the Accuracy and Actual AI Reliance results, analytical power was maximized by optimiz-
ing model fit. The preferred models for Accuracy and Actual AI Reliance were Poisson-distributed, and Time 
and Self-Assessed AI reliance were Gamma-distributed.
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As expected, results for Accuracy (see Appendix 14: Study 
Set 2, Experiment 1, ANOVA Results (Accuracy)) revealed 
that the Explainability Level variable exercised a significant 
effect on the participants’ decisionmaking acumen. Those 
assigned to the High Explainability condition were signifi-
cantly more accurate (MHighExplainability = 3.94, SDHighExplainability = 
0.58) than those assigned to the Low Explainability condi-
tion (MLowExplainability = 6.06, SDLowExplainability = 0.68), F(1, 45) = 
5.37, p = 0.03 (see Figure 6). 

Figure 6. Accuracy Results, Study Set 2, 
Experiment 1
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Interestingly, participants assigned to the Low Explainabil-
ity condition perceived themselves as relying more on the AI 
agent’s recommendation (MLowExplainability = 3.72, SDLowExplainability 
= 0.13) than those assigned to the High Explainability condi-
tion (MHighExplainability = 3.35, SDHighExplainability = 0.14), F(1, 141) = 
3.58, p = 0.06. Despite this perception, however, tests of Actual 
AI Reliance revealed that participants in the Low Explainabil-

ity condition did not actually rely more on the AI agent’s recommendations, F(1, 45) = 1.32, p = 0.26 (see 
Appendix 15: Study Set 2, Experiment 1, Actual AI Reliance Compared to Self-Assessed AI Reliance). 

A further examination revealed that the covariate Dislike (i.e., dislike toward the AI agent) mediated 
the relationship between Explainability Level and Perceived AI Reliance. As Figure 7 illustrates, both the 
standardized regression coefficients between Dislike and Perceived AI Reliance and between Explainability 
Level and Dislike were statistically significant. Interestingly, these results showed that consistent with the 
XAI hypothesis greater Explainability predicted a significant decrease in Dislike felt toward the AI agent. 
Decreased dislike subsequently resulted in significantly increased perceived AI reliance.

Figure 7. Mediation of Explainability on Perceived AI Reliance by Dislike
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Choice of Explainability Level (Experiment 2)

The goal of Experiment 2 was to delve more deeply into the mixed results observed in Experiment 1, in 
which participants perceived greater (though not actual) reliance on Low Explainability AI recommenda-
tions, disliked High Explainability AI recommendations, and yet interestingly performed more accurately 
when receiving AI agent recommendations with High Explainability. Specifically, the objective was to 
investigate the influence of providing participants a Choice of Explainability Level on their perceived and 
actual reliance, task engagement, and subsequent accuracy. 

To this purpose, 124 current and former business analysts and editors were recruited from within the 
National Geospatial-Intelligence Agency (NGA) and randomly assigned to the two levels of Choice  
(nNo Choice = 62; nChoice = 62); those in the No Choice condition were assigned to an Explainability Level, 
while those in the Choice condition were permitted to select their Explainability Level. Not surprisingly, 
a majority (68.1 percent) of those who were provided a choice preferred to receive their AI recommenda-
tions with a Low Explainability format, with the rest preferring to receive their recommendations with a 
High Explainability format.

As in Experiment 1, analytical power was maximized by reducing the number of estimated parameters 
and improving fit with respect to the response variable. Specifically, alternative variance-covariance models 
across occasions and with different response variable distributions (e.g., Poisson and Negative Binomial, 
again because of the count nature of the data) were examined. Nonnested alternate response variable dis-
tributions were fit by selecting the model with the generalized χ2/d.f. closest to 1, and nested alternate 
variance-covariance models were fit using likelihood ratio tests. The preferred combination of response dis-
tribution and variance-covariance structure for both Correctness and Actual AI Reliance tended to be Poisson, 
distributed with separate residual variances per occasion, and Variance Components residual correlations for 
measurement periods 1-4. The pre-
ferred response variable distribution 
and variance-covariance structure 
for Time and Self-Assessed AI reliance 
tended to be Gamma, distributed 
also with separate residual variances 
per occasion, and Variance Compo-
nents residual correlations for mea-
surement periods 1-4.

Figure 8. Accuracy Results, Study Set 2, Experiment 2
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Consistent with the results in Exper-
iment 1, participants who received 
their recommendations with a High 
Explainability format made fewer 
errors (MHigh Explainability = 3.30, SDHigh 

Explainability = 0.13) than those who 
received recommendations with a 
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Low Explainability format (MLow Explainability = 3.90, SDLow Explainability = 0.12), F(1, 68) = 7.45, p = 0.008 (see 
Appendix 16: Study Set 2, Experiment 2, ANOVA Results (Accuracy)). Also consistent with Experiment 
1, the Explainability Level variable did not significantly influence participants’ actual reliance on the AI 
agent, F(1, 68) = 0.08, p = 0.78. Interestingly, Explainability Level did continue to predict participants’ 
Self-Assessed AI Reliance to a significant degree, F(1, 67) = 11.24, p = 0.001, but in a direction opposed 
to the XAI argument that an AI agent providing recommendations that are relatively more interpretable 
will engender trust and, therefore, reliance. In contrast, participants who received AI recommendations 
in a Low Explainability format reported significantly greater reliance on the AI agent (MLow Explainability = 
3.90, SDLow Explainability = 0.12) than those who received recommendations in a High Explainability Format 
(MHigh Explainability = 3.30, SDHigh Explainability = 0.13), F(1, 67) = 11.24, p = 0.001 (see Appendix 17: Study Set 2, 
Experiment 2, Actual AI Reliance Compared to Self-Assessed AI Reliance).  

As seen in Experiment 1, mere Choice did not significantly influence participants’ performance, F(1, 68) 
= 0.15, p = 0.15, or actual reliance on the AI recommendations, F(1, 68) = 2.17, p = 0.48 (see Appendix 
14: Study Set 2, Experiment 1, ANOVA Results (Accuracy)). However, allowing participants a Choice 
in Explainability Level, as offered in Experiment 2, did influence their own assessment of how much 
they relied on the AI agent, F(1, 67) = 33.86, p < 0.001 (see Appendix 17: Study Set 2, Experiment 2, 
Actual AI Reliance Compared to Self-Assessed AI Reliance). Furthermore, provision of choice attenuated 
the mediation of Explainability Level and Dislike toward the AI agent that was observed in Experiment 
1. Critically, Experiment 2’s results also revealed a significant interaction between Explainability Level 
and Choice: providing Choice irrespective of whether a participant selected High Explainability or Low 
Explainability improved performance in the task to match that of the No-Choice/High Explainability 
condition, F(1, 68) = 9.62, p = 0.003. Finally, an analysis of attrition rates across the task suggested that 
participants who were provided a choice were significantly more likely (88.71 percent) to complete the 
task than those who were not provided a choice (45.16 percent), χ2 (26.56, n = 124) < 0.001 (see Appen-
dix 18: Study Set 2, Experiments 1-2, Task Engagement).
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Digging Deeper: Possible Drivers 
Behind the Studies’ Findings 

Drivers of Human-AI Reactance
In the first set of experiments, which address RQ1, participants were asked to make production decisions 
for several artificial film posters with the goal of making decisions consistent with the majority of other 
respondents. The task was designed as a proxy for IC decision settings in which end users of AI agents must 
decide whether to accept an analytic product or recommendation regarding a product. In a decisionmak-
ing setting, participants were provided an AI agent, Artemis, that offered them a decision recommendation 
in either verbal or numeric form. Participants were asked to make these decisions in a series of “practice” 
and “actual” tasks, and the format of the decision recommendation (i.e., verbal or numeric) was varied 
randomly across the different sets of tasks depending on participant condition assignment. Thus, format 
served as a cognate for User Interface Settings. The participants determined the extent to which they relied 
on the AI agent recommendations, and the dependent variable measured the number of production deci-
sions consistent with the AI agent recommendations.

As noted in the Findings section above, the results in both experiments under Study Set 1 were broadly 
consistent with H1 (Experts will be less susceptible than Nonexperts to deviations in User Interface Set-
tings). The results of Study Set 1’s experiments showed that Experts were generally not reactive to the 
consistency of recommendation presentation across the practice and actual tasks. On the other hand, 
Nonexperts who received incongruent recommendations across the practice and actual tasks (a proxy 
variable for an environmental variable, User Interface Settings) were significantly more likely to concur with 
the AI agent’s recommendations. Furthermore, the pattern of decisionmaking results was explained by a 
mediating variable, self-assessed Reliance on the AI agent, suggesting the decision to rely on the AI agent 
was an active one.

Notably, while AI agent recommendations in Experiment 1 were only positively valenced (e.g., framed 
in terms of a recommendation to produce the film such as “there is a 75-percent probability/it is 
likely this film would do well”), recommendations in Experiment 2 were more realistic and, therefore, 
were both positively and negatively valenced. Although the inclusion of both positively and nega-
tively valenced recommendations somewhat attenuated the previously observed differences between 
observed means in Experiment 2, this result was not unexpected. Increasing the realism of the task 
necessarily increased the likelihood that respondents might make different decisions based on random, 
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unobservable factors. Importantly, Nonexperts who received AI recommendations in an Incongru-
ent format remained significantly more likely to accept AI agent recommendations. Furthermore, the 
observed pattern’s dependence on participants’ self-assessed Reliance on the AI agent revealed that the 
participants were consciously aware of their active reliance on the AI agent. Note that the measures 
used to capture participant reliance on the AI agent were post-task questions (see Appendix 11: Study 
Set 1, Experiment 2, Reliance Measures and Mediation Results), which suggests—significantly—that 
participant reliance on the AI recommendations was above the perceptual threshold and, therefore, a 
function of active participant decisionmaking.

Interestingly, although the pattern of results for Experts generally aligned with preexperiment expectations, 
the pattern for Nonexperts ran contrary to expectation. As discussed previously, Experts tend to recognize 
their way through a problem, whereas Nonexperts tend to reason their way through one. Experts have been 
shown to be better at recalling key information and perceiving subtle differences important to a task. They 
tend to employ faster and more uniform decisionmaking, which is consistent with employing crystallized 
knowledge inherent in domain expertise.82, 83, 84 

On the other hand, the Nonexperts in Study Set 1 presumably reasoned their way through the decision 
tasks and, when they were exposed to the Incongruent User Interface Settings, adjusted their decisionmak-
ing in a pattern generally more consistent with the AI agent’s recommendation. Intuitively, one would 
expect perceived inconsistencies (i.e., incongruencies in recommendation presentation) between practice 
and actual tasks to be interpreted as an error, and previous research has shown that, when people observe 
an AI agent make a mistake, they are less likely to accept its recommendations.85 The opposite pattern 
was observed.

A possible explanation for the Nonexperts’ readiness to accept the AI agent’s recommendations, even when 
perceiving inconsistencies, is the inclination toward uncertainty absorption among Nonexperts. Under 
uncertainty absorption, the Nonexperts may have felt they did not possess a sufficient understanding of 
the intricacies of the task, and this might lead to suboptimal performance. Furthermore, the incongruent 
presentation of AI recommendations in the Nonexpert-Incongruent condition may have served to simul-
taneously increase the salience of the AI recommendation. Participants may then have shown increased 
propensity to rely on the AI agent’s recommendations because they felt they could not do well on the task 
with their own level of understanding.86

If the observed pattern of results was a function of uncertainty absorption among Nonexperts and relatively 
crystallized knowledge related to information processing among Experts, one would expect to observe this 
in their self-assessments of the degree to which they relied on AI agent recommendations—Self-Assessed 
AI Agent Reliance. Consistent with this possible explanation, the results pattern for both Experiments 1 
and 2 in Study Set 1 generally conformed to the results pattern expected under uncertainty absorption: 
Nonexperts indicated that they relied on the AI agent recommendations significantly more when receiving 
recommendations with User Interface Settings that were incongruent across the practice and actual tasks 
relative to those assigned to the Expert condition. Additional research is necessary to isolate whether the 
observed mediation pattern, in which Nonexperts (but not Experts) indicated greater reliance on the AI 
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agent, is actually because of uncertainty absorption. Thus, the following propositions, consistent with the 
results pattern, are offered:

P1: Demonstrated: The pattern in which Nonexperts (Experts) made decisions consistent (inconsistent) 
with the AI agent’s recvommendations when User Interface Settings were Incongruous is mediated by an 
active reliance on the AI agent’s recommendations.

And:

P2: Proposed: The pattern in which Nonexperts (Experts) made decisions consistent (inconsistent) with 
the AI agent’s recommendations when User Interface Settings were Incongruous is explained by both uncer-
tainty absorption and active reliance on the AI agent’s recommendations, in that order.

Improving Joint Human-AI Decisionmaking
The second set of experiments addressed the need to develop additional tools to improve joint human-AI deci-
sionmaking (RQ2). Specifically, Study Set 2 investigated the potential benefit of providing participants a Choice 
in Explainability Level of an AI agent’s recommendation output, with the reasoning that allowing participants 
a Choice in Explainability Level might improve participant task engagement and thus improve overall perfor-
mance. The first experiment was GEOINT-focused and relied on a sample of IC GEOINT analysts who were 
presented with a series of images in which they were asked to count the number of four-door sedans. The ana-
lysts were assisted by an AI agent that provided recommendations output in either Low or High Explainability 
Levels. The second experiment was similar in overall design although it was an editing-focused task relying on 
a sample of IC business analysts and editors. The participants were asked to count the number of spelling and 
grammatical errors in a series of text documents, and the front end of the experiment was altered to provide 
some participants the opportunity to choose which Explainability Level they preferred to receive in the task. 

Explainability Level (Study Set 2, Experiment 1)

Consistent with H2 (A High (Low) Explainability recommendation from an AI agent will result in increased 
(decreased) accuracy), results from Experiment 1 generally showed participants performed more accurately 
when receiving recommendations in the High Explainability Level format. Interestingly, there was no differ-
ence in participant engagement in the task between those assigned to the High and Low Explainability Level 
conditions (H4). And although participants assigned to the Low Explainability Level condition perceived 
they relied on the AI agent significantly more (H3a), in fact an analysis of Actual AI Reliance revealed no sig-
nificant differences in Actual AI Reliance between the High and Low Explainability Level conditions (H3b). 
Taken together, the improvement in performance accuracy along with the lack of difference in task engage-
ment suggests that provision of output in a High Explainability Level format may result in higher participant 
cognitive performance than when output is provided in a Low Explainability format. However, the observed 
lack of difference in engagement was not fully consistent with XAI objectives. 
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Consistent with H5 (A High (Low) Explainability recommendation from an AI agent will result in less 
(more) dislike toward the AI agent), higher Explainability resulted in significantly decreased dislike toward 
the AI agent, and this in turn resulted in significantly higher self-perceived (although not actual) reliance 
on the AI agent. 

Note that this result contrasts with the participants’ self-perception of reliance cause and effect: although 
participants perceived they relied more on the AI agent in the High Explainability Level condition, they 
also perceived that they did so with increased dislike toward the AI agent. Thus, while overall performance 
was better for the High Explainability Level condition, there was a strong emotional preference for the Low 
Explainability Level condition. 

Previous research has shown that, in the long run, people tend to do better at tasks they enjoy and avoid 
interactions they code as negatively valenced.87 Furthermore, they tend also to have a strong preference for 
interactions with less complexity. 88, 89, 90  People tend to prefer simpler causal explanations and simpler ver-
sions of concepts, for example, and although consumers are generally willing to pay more for products with 
more features, there is a point at which more is actually less. 91, 92, 93 A challenge with increasing Explain-
ability Level is that it is frequently (although not always) associated with presenting additional information 
that may be perceived as more complex. The participants’ exhibited dislike for the High Explainability Level 
algorithm is generally consistent with aversive behavior toward more complex interactions and with coding 
the experience with a negative valence.

A further consideration is that mere explainability may not be enough to improve end users’ willingness 
to use the most sophisticated algorithms. More sophisticated AI algorithms have been characterized as 
explanatory “black boxes” because even their designers may not fully understand the reasoning behind 
their recommendations. For example, neural network algorithms model the underlying data by varying 
relationships between nodes of different weights spread across a variable number of layers. Although it is 
certainly possible to characterize the arrangement, weights, and relationships between the nodes, it is not 
clear from a human perspective—even for the algorithm’s developers—what any particular arrangement, 
set of relationships, or vector of nodal weights might mean. Thus, the overall algorithmic procedure is clear, 
but the way in which the algorithm actually models the underlying data—the reasoning behind the ulti-
mate recommendation—is not. Therefore, consistent with the results for H5, providing such explanations 
may further increase the complexity of High Explainability results, subsequently increasing dislike toward 
the AI agent and decreasing self-perceived reliance on it.

Thus, end users may have cause to dislike AI agents providing High Explainability output because of the 
often necessarily increased complexity associated with the explanations. While previous research has shown 
that people may be generally more receptive toward AI output that is more explainable, most studies that 
support these results only assess increased explainability using relatively simple algorithms rather than those 
consistent with being a “black box.” 

And although people may adapt to the increased complexity usually associated with the High Explainability 
Level results of more complex algorithms, existing research shows that—for at least some populations—aversion 
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to computationally intensive activities, such as those involving algorithms, may increase rather than decrease 
over time.94 More research in this area is warranted. Thus, even while real benefits are observed that are con-
sistent with the XAI thesis, these gains may be short-lived if people increasingly avoid AI agents as a function 
of increased dislike because of relatively increased complexity.

Choice of Explainability Level (Study Set 2, Experiment 2)

In Experiment 1 the results provided qualified support for the XAI thesis. Although performance accuracy 
improved after receiving AI agent recommendations in a High Explainability format and although par-
ticipants perceived they relied on the AI agent more (albeit in the Low Explainability condition), they did 
not actually rely on the AI agent more. Moreover, task engagement did not improve. In contrast to this, in 
Experiment 2 participants demonstrated significantly greater task engagement when they were offered a 
Choice in the AI agent’s Explainability Level. Furthermore, participants who were offered a Choice in the AI 
agent’s recommendation Explainability Level performed as well in both the Low and High Explainability 
conditions as in the No Choice/High Explainability Level condition. In other words, the observed perfor-
mance accuracy advantage gap between High and Low Explainability Levels fully attenuated in favor of 
increased accuracy when participants were offered a Choice.

Table 4: Summary of Findings by Hypothesis

H1 Experts will be less susceptible than Nonexperts to deviations in User Interface Settings. Supported

H2 A High (Low) Explainability recommendation from an AI agent will result in increased 
(decreased) accuracy.

Supported

H3a Participants will perceive they rely on the AI agent more (less) in the High (Low) 
Explainability condition.

Not supported: 
opposite pattern

H3b Participants will actively rely on the AI agent more (less) in the High (Low) 
Explainability condition. 

Not supported

H4 A High (Low) Explainability recommendation from an AI agent will result in more (less) 
task engagement. 

Not supported

H5 A High (Low) Explainability recommendation from an AI agent will result in less (more) 
dislike toward the AI agent. 

Supported

H6 Allowing participants a choice (no choice) in Explainability Level format will result in 
increased (decreased) task engagement. 

Supported

H7 Allowing participants a choice (no choice) in Explainability Level format will result in 
increased (decreased) accuracy. 

Supported

H8 Allowing participants a choice (no choice) in Explainability Level format will result in 
decreased (increased) disliking irrespective of Explainability level. 

Partially 
supported

Interestingly, despite the apparent improvement in performance accuracy, participants still did not actually 
rely on the AI recommendation more in either the Choice or Explainability Level conditions. However, 
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perceived reliance on the Low Explainability Level AI agent recommendations persisted. Since participants’ 
improvement in accuracy cannot be attributed to actual increased reliance on the AI recommendations, 
this suggests the observed performance was a result of participants working harder on the task. Interest-
ingly, the previously observed dislike toward the AI agent in the High Recommendation formats also atten-
uated, which is encouraging from a long-term implementation perspective. As previously discussed, there 
is reason to be concerned that interactions with the AI agent that are coded as negatively valenced may 
result in decreased usage over the long run. However, it is unclear from this experimental setup whether the 
attenuation of dislike was a function of different task domains (i.e., GEOINT vs. editing) or the knowledge 
that there were different Explainability Levels available. 

Limitations and Future Research
There are several shortcomings to this research. First, Study Set 1 employed a highly contrived task with 
which participants were largely unfamiliar (film production decisions). Although the participants were led 
to believe they had relatively more or less expertise in the task domain, the fact remains that knowledge 
in this area was artificial: the proposed films were not real, the films were never going to be produced, 
participant knowledge was based on contrived (and manipulated) information sets, and participants did 
not exercise any real authority over whether the films would be produced. Thus, despite the fact that 
participant decisions were consequential from a task incentive perspective, one could reasonably argue 
that participants might have been making choices consistent with what the researcher intended. If so, the 
observed pattern of results might reflect what participants believed the researcher wanted to see rather than 
their preferred decisions.

Second, recall that Self-Assessed Expertise was a manipulated variable based on the participants randomly 
receiving one of two different information sets and their subsequent performance on a test. In real life, 
expertise takes years of focused, disciplined study. Although an oversimplification, research has shown 
that people need more than 10,000 hours of experience in a given domain before they are “experts” and 
exhibit qualities consistent with domain expertise.95 While the psychological manipulations of expertise 
in these studies were successful—in that people believed they were experts—it is possible that the artifi-
ciality of the experiment failed to activate a mindset utilizing cognitive processes consistent with actual 
expertise. If so, the observed pattern of results may have resulted from an unobserved, yet-undetermined 
variable. Additional exploration of these results in a field setting involving actual experts is warranted as 
an important next step.

Finally, there are practical concerns. While this research shows that Experts and Nonexperts are differently 
susceptible to AI agent recommendations when receiving recommendations with User Interface Settings 
that are Incongruent between Practice and Actual Tasks, follow-on options for managers and developers 
are somewhat limited. For example, with respect to differences in expertise levels, managers may attend 
more carefully to shift assignments and how analysts with relatively greater domain expertise are integrated 
into their workforce. And developers and managers alike may develop and implement policies to test and 
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standardize User Interface Settings across systems to mitigate the potential for the effects observed in Study 
Set 1’s experiments. However, in both cases, managers and developers are simply reducing the differential 
influence of the AI agent on known population segments with now-identified environmental characteris-
tics (User Interface Settings). The research does little to assess and recommend improvements for the overall 
performance of the human-machine team. 

Study Set 2 addressed the above concerns and presented results that focused on improving joint human-AI 
decisionmaking. Specifically, participants were members of the IC and performed tasks relevant to their 
stated area of domain expertise. Be that as it may, there are several limitations to this research that bear 
further investigation.

First, it is interesting that provision of mere Choice improved task engagement but Explainability Level did 
not. Further exploration of the role of Choice, potentially at other touchpoints in the human-AI interaction 
lifecycle, is warranted. For example, one might explore allowing customization of specific aspects of the 
algorithm, such as distance measurement, or of elements of the algorithmic model, or one might even allow 
selection of different types of algorithms. Understanding how the benefits of choice generalize across the 
human-AI interaction lifecycle will allow mission owners to better customize when and where to build in 
choices for end users. 

Second, while Choice appears to have a significant main effect on task engagement and a significant joint 
interactive effect with Explainability Level on accuracy, note that a significant body of research indicates that 
provision of too much choice can impair decisionmaking.96 As mentioned above, this research only consid-
ered two levels of Choice with respect to one human-AI touchpoint (Explainability Level). The number of 
choice options can quickly expand depending on the number of human-AI touchpoints allowing choice, as 
well as the number of choices offered. Understanding the optimal number of touchpoints to allow Choice 
and how many choices to allow at each touchpoint is critical.

Third, future research should focus on better understanding the discontinuity between actual and perceived 
reliance on the AI agent recommendations. One possible explanation for this discontinuity might be the 
timing of when the measures for actual and perceived reliance were collected. Recall that actual reliance 
was captured during the task, whereas perceived reliance was captured post-task with a set of behavioral 
survey items. Previous research has shown that momentary assessments, such as impressions, during a task 
may differ significantly from global or retrospective assessments post-task.97, 98 Momentary assessments have 
been shown to better predict impulsive behaviors, whereas retrospective assessments tend to better predict 
behaviors in which cognition (and by necessity memory) plays a role.99, 100 Study Set 2’s experiments were 
both cognitively focused (i.e., involving image recognition, problem solving, and counting). Additional 
research should explore whether the observed results pattern differs for tasks involving impulsive or “spur of 
the moment” decisionmaking.

Finally, it is unclear why mere awareness of Explainability Level options in Experiment 2 resulted in attenu-
ation of the previously observed mediation pattern for dislike of the AI agent. If a High Explainability Level 
was a driver for dislike, then awareness of other Explainability Level options should not have attenuated the 
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mediation results. Furthermore, presenting additional Explainability Level options necessarily increased the 
complexity of the overall interaction, and one would intuitively expect that increased complexity would 
invite increased dislike. This pattern was also not observed. Further research investigating potential inter-
active influences of option awareness on Choice, Explainability Level, and other potential human-AI touch-
points is warranted.
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Conclusion: Implications 
and Recommendations

 

Human-AI Relationship Research and Results
IC and DoD investments in AI systems in analytic settings have produced mixed results. Although there have 
been some successes with limited human-AI integration, more complex applications have proven elusive. In 
particular, some of the challenges discussed in this work include: end users who are unwilling to accept 
AI agent recommendations; the potential introduction, perpetuation, and accentuation of human bias in 
human-in-the-loop human-AI systems; and in the research and management literature, an overweighting of 
AI agent recommendation performance (i.e., number of false positives and negatives) and an underweighting 
of joint human-AI outcomes.

The goal for this research has been to draw attention to the importance of determining and addressing 
specific needs of the human element in the human-AI relationship when developing complex algorithms 
for integration in IC missions. The author has demonstrated this through the investigation of two research 
objectives: identification of an IC-relevant driver of human-AI reactance—broadly defined as an irrational 
avoidance or attraction to AI agents—that is managerially relevant (RQ1), and identification of additional 
approaches to improving joint human-AI decisionmaking (RQ2). 

With the goal of addressing RQ1, Study Set 1 investigated the interactive role between an environmental factor 
(User Interface Settings) and a psychological factor (Expertise Level)—both of which are common to IC settings 
and have not been fully accounted for in the extant literature. Results showed that while Experts were relatively 
insulated from the influence of different User Interface Settings on their decisionmaking, Nonexperts were not, 
and when Nonexperts encountered a situation with which they were unfamiliar (Incongruent User Interface 
Settings) they were significantly more likely to rely on the AI agent’s recommendation. While this may be a pos-
itive outcome depending on the relative accuracy of the AI agent and the human analyst, the extent to which 
this happens differently between Experts and Nonexperts may be problematic for mission owners, who do not 
wish to see the consistency of decisionmaking depend on random shift assignments and subsequent differences 
between shift compositions of Experts and Nonexperts. One area that was not addressed in Study Set 1 was 
quality of decisionmaking, or the extent to which joint human-AI reasoning produced improved outcomes.

Study Set 2, which was designed to address RQ2, further investigated the influence of Explainability 
Level and Choice in improving joint human-AI decisionmaking. Results pertaining to Explainability 
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Level suggested that, although increasing Explainability Level resulted in improved performance accu-
racy, this also came at the expense of increased participant dislike for the AI agent. Furthermore, High 
and Low Explainability Level did not significantly predict task engagement which is a key objective of 
the XAI thesis. A further investigation into allowing participants Choice in AI agent Explainability Level 
revealed that participants who were allowed Choice performed as accurately as participants in the pre-
viously observed No Choice/High Explainability condition. Furthermore, allowance of Choice simulta-
neously improved overall task engagement and decreased participant dislike toward the AI agent. Taken 
together, these results suggest previously observed benefits to increased Explainability Level may at least 
partially be an artifact of tightly controlled experimental designs, and subsequently may not generalize 
well to settings in which participants realize they have a choice in recommendation output—a situation 
that has become increasingly common given the recent trend toward integration of analysts with data 
scientists and developers.

Implications and Recommendations
These findings suggest five recommendations to improve integration of AI agents with human analytic 
efforts:

1.	 IC managers should design analytic team assignments to ensure optimal human-AI interoperability.

When designing and integrating AI agents that provide recommendations to analysts, managers should 
attend to the distribution of domain experts across workgroup assignments. Findings from Study Set 1 
showed that differences in domain expertise resulted in significant differences in the degree to which AI 
recommendations were accepted. These findings further depended on User Interface Settings applied to Non-
experts but not Experts. These results suggest that work groups with differences in the depth of expertise in 
their bench strength may arrive at different conclusions.

Currently, analytic teams are staffed based on need and according to a billet structure. Such workgroups 
tend to be pyramid-shaped, with few experts providing analytic and managerial guidance to a relatively 
greater number of less-experienced analysts. Given the relatively small size of most offices, this assignment 
pattern may lead to the erroneous belief that expertise levels are randomly distributed. However, in practice, 
the distribution of expertise may be unbalanced.101 This pyramid-shaped structure can result, therefore, in 
significant differences in the number of experts assigned across workgroups and shifts, leading to differences 
in the extent to which AI agent recommendations will be accepted.

2.	 IC managers and AI system developers should routinely monitor how the system’s user interface 
designs contribute to different decisionmaking outcomes.

Where it is not possible to manage the distribution of domain expertise across analytic teams, managers 
may wish to identify additional user interface design factors that contribute to differences in recommenda-
tion acceptance rates. Further, managers should work with AI system developers to ensure that these factors 
do not skew decisionmaking outcomes across workgroups with differing levels of expertise. 
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This research has shown generally little difference in whether participants accepted AI agent recommen-
dations when they were framed in either a numeric or verbal format. However, participants did recognize 
when recommendation format changed over time (i.e., numeric-verbal or verbal-numeric vs. numeric-
numeric or verbal-verbal), which resulted in different AI agent recommendation acceptance rates between 
domain Experts and Nonexperts, who were significantly more likely than the Experts to rely on the AI 
agent. Failure to be aware of this or control for it may result in a lack of analytic decisionmaking consis-
tency across workgroups.

3.	 IC managers should identify and mitigate the effects of additional individual difference factors that 
may influence decisionmaking outcomes.

This monograph has focused on the interactive role of domain expertise on certain user interface settings 
such as verbal or numeric presentation of data. However, the scope of the research was necessarily limited 
by pragmatic factors such as time and cost to implement various experimental designs. Additional indi-
vidual differences that interact with the user interface settings explored, as well as additional user interface 
settings, should also be considered. Managers should continually scan for additional individual difference 
factors that may significantly influence end user decisionmaking. 

After identifying such differences, managers would also be wise to develop education and training cam-
paigns to minimize gaps across analytic teams. For example, one workgroup may possess relatively more 
individuals with greater expertise in Order of Battle assessments, whereas another workgroup possesses 
relatively more individuals with greater expertise in C4ISR. In such cases, it may be reasonable to provide 
crosstraining and education opportunities to balance the distribution of expertise.

Last, it may not be possible to control for all these factors. For example, some individual differences that 
result in disparate AI acceptance rates may fall into protected categories. Education campaigns for both 
analysts and supervisors can help guard against specific biases linked to these individual differences.

4.	 Explore and identify the touchpoints between human and AI interactions in which choice should 
be offered and determine optimal choice structure.

This monograph has shown that providing end users a choice regarding Explainability Level led to 
increased engagement and subsequently more accurate performance—despite no difference in the 
amount of time spent on the task. However, there are multiple touchpoints between humans and AI 
agents that should be further explored. For example, offering humans the option to help select model 
parameters could yield generally improved insight into the “black box” and subsequently increase overall 
performance. Alternately, offering humans the option to select different forms of avatars that present 
information to the end user, while seemingly innocuous, may result in significant differences in engage-
ment and overall performance.

Furthermore, research into choice has shown that more choice is not always better. Customers can easily 
suffer from “choice overload” and this can lead to suboptimal outcomes as a function of constructed prefer-
ences.102 Thus, it is critical that managers not only systematically catalog various touchpoint opportunities 
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between human and AI agents but also optimize them for the ideal set of choice options. Furthermore, 
managers must test these touchpoints with the goal of mitigating negative influences on decisionmaking 
while also capitalizing on the positive influences. 

5.	 Finally, IC managers must focus on joint human-AI outcomes in their implementation of AI 
among the analytic community. 

Too often, assessments of algorithm performance have been framed in terms of model fit criteria or 
outcome performance based on the number of false negatives and positives. For example, a supervised 
machine learning model might be trained on a training data set comprising 80 percent of recorded data 
and human decisions, and then tested against a test data set comprising 20 percent of recorded data and 
human decisions to assess model performance relative to the human decisions. Models that perform as well 
in the 20-percent test set as in the 80-percent training set are determined to be “good.” Alternately, algo-
rithmic decision accuracy may be determined based on known outcomes to develop a confusion matrix 
providing the ratios of false positives, false negatives, true positives, and true negatives. Relatively greater 
ratios of true positives and negatives to false positives and negatives result in an assessment that the model 
is performing as expected.

Taken together, however, the findings from this research suggest that, in joint AI-human decisionmaking 
systems (such as those with a human-in-the-loop), the mere introduction of algorithmic decisionmaking 
aids or recommendations can influence not only algorithm aversion or appreciation—as recently suggested 
by research from Berkeley Dietvorst103 and Jennifer Logg104—but also the actual quality of the joint deci-
sion in a manner inconsistent with the original intent. Thus, developers, managers, and researchers in this 
area should take care to ensure that joint decisionmaking does not negatively influence overall performance 
or decisionmaking speed. Furthermore, while this research considers the impact of joint decisionmaking in 
the short term, managers and future researchers should also consider the long-term effects on humans of 
ceding critical thinking to AI-based agents.
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Appendix 1: Study Set 1, 
Overview of Task, Instructions, 
and Incentive Structure

 

Task Background

We are testing a new artificial intelligence (AI) agent, Artemis, that can assist people with making decisions 
based on rules or “tips” we have provided it. We want to see how well people work with Artemis.

Task Overview

We have designed a task in which we ask you to play the role of film producer. We will show you an image 
of a (fake) movie poster and are interested in whether you would either BEGIN PRODUCTION or 
CANCEL PRODUCTION based on the visual appeal of the movie poster. Artemis may also provide you 
a recommendation and, if you receive this, you may use this as you see fit.

BONUS OPPORTUNITY

If you select the choice (BEGIN PRODUCTION or CANCEL PRODUCTION) MOST frequently 
selected by previous participants, you will GAIN $0.05 for each correct choice.

However, if you select the choice (BEGIN PRODUCTION or CANCEL PRODUCTION) LESS fre-
quently selected by previous participants, you will LOSE $0.05 for each incorrect choice.

Please ensure you understand the above instructions and proceed to the next screen to give your informed 
consent.
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Appendix 2: Study Set 1, 
Information Sets/Tips

 

Before you begin, we need to assess your current level of expertise related to the task (film production deci-
sions). Our previous work has shown that expertise level can influence your answers, and we need to control 
for this in our analysis.

You may not think you’re an expert in film production decisions, but in fact research has shown that every-
one varies in their understanding of different topics, and some people are more or less expert than others. 
Research has shown that people with more expertise in an area are better able to process and use information 
related to that topic. Next, we will give you some tips that will help you make your decisions in the actual 
task, and then we will give you a comprehension test of the tips that we will give you. Your score will deter-
mine your relative level of expertise.

On the next screen you will see the tips related to film production and the movie posters we are about to 
show you. Please read these carefully and respond to the five comprehension questions as best you can. We 
will score your answers and provide you with feedback on both your answers (if incorrect) as well as your 
level of expertise relative to the average.

Bonus Opportunity: Because our analysis depends on successfully controlling for your prior expertise 
in this task, we are incentivizing this section. For every answer you score correctly you will earn an 
additional $0.05. Incorrect answers will receive no additional incentive.

Click the --> button to begin the assessment.

Tips on Selecting Films for Production Based on the Poster:

1.	 Most people have heard of how the “rule of thirds” applies to photography. The rule refers to the 
phenomenon that people find photographs more visually appealing when the photographed area 
is divided (by the subject, text, etc.) into clearly visible thirds. This also applies to film posters. 
However, because film is narrative and dynamic whereas photographs are static, people expect to 
see the thirds arranged to be consistent with how stories are written: that is, top-to-bottom when 
vertical, and left-to-right when horizontal.

2.	 When advertising for an upcoming film, artists are also careful to take into account both where 
and how main characters are placed in the image. Because people expect stories to naturally run 
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from left-to-right or top-to-bottom, they also expect the protagonists or “good guys” to be on the 
left side of the poster facing right (congruent with the story’s direction), whereas they expect the 
antagonists or “bad guys” to be on the right side of the poster facing left (incongruent with the 
story’s direction).

3.	 Sometimes, when movie producers wish to subconsciously signal a significant plot reversal (e.g., 
the protagonist suddenly turns out to be the antagonist, and the antagonist suddenly turns out to 
be the protagonist) it helps to flip the expected subject’s placement and orientation in the image. 
Artists may also break the “rule of thirds” to highlight this. This can be especially effective when 
employed correctly (i.e., in a film in which the plot reverses) but can backfire when employed 
incorrectly (i.e., when the film’s plot does not reverse).
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Appendix 3: Study Set 1, 
Attention Check

 

1.	 If a film has two main characters (a boy and a girl), what would be the optimal placement for the 
characters in the film poster to generate the most interest:

•	 Girl on the left facing right; Boy on the right facing left
•	 Girl on the top-left facing downward to the right; Boy on the Top-right facing downward to the left
•	 Boy on the right facing left; Girl on the left facing right
•	 Boy on the top-left facing downward to the right; Girl on the top-right facing downward to the left
•	 Boy and girl side-by-side facing the “camera” or observer directly

2.	 If a film has two main characters (a man and a woman), what would be the optimal placement for the 
characters in the film poster to generate the most interest:

•	 Woman on the left facing right; Man on the right facing left
•	 Woman on the top-left facing downward to the right; Man on the top-right facing downward to 

the left
•	 Man on the right facing left; Woman on the left facing right
•	 Man on the top-left facing downward to the right; Woman on the top-right facing downward to 

the left
•	 Man and Woman side-by-side facing the “camera” or observer directly

3.	 In a conventional story, which main character type would be best placed centered, looking down in the 
top half of the film poster?

•	 A protagonist man
•	 An antagonist woman
•	 A protagonist girl
•	 An antagonist boy
•	 A protagonist child (could be a boy or girl)



THE DEVIL YOU DON’T KNOW: THE NEED FOR JOINT HUMAN-AI DECISIONMAKING OUTCOMES ASSESSMENTS  62

4.	 In a conventional story, which main character type would be best placed centered, facing right in the 
left third of the film poster?

•	 A protagonist animal
•	 A protagonist man
•	 A protagonist woman
•	 A protagonist girl
•	 A protagonist boy

5.	 In a story with a plot reversal, which main character type would be best centered, facing left in the right 
third of the film poster.

•	 An antagonist animal
•	 An antagonist man
•	 An antagonist boy
•	 An antagonist woman
•	 An antagonist girl
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Appendix 4: Study Set 1, Sample 
AI Agent Recommendations 
Following Tutorial

 

Source: Movie poster concept derived from reddit site /u/Your_Post_As_A_Movie. 
Images used to create this image from Pexels. 

 

The AI Agent (Artemis) recommendations were presented in semantically congruent or incongruent format, 
depending upon whether an individual’s tutorial had used a verbal or numeric format.
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If the tutorial practice task was worded in verbal format, as “Artemis suggests it is likely this film would do 
well if you begin production,” then:

Congruent format: 

Participants Shown: “Artemis suggests it is likely this film would do well if you begin production.”

OR

Incongruent format: 

Participants Shown: “Artemis suggests there is a 75-percent probability this film would do well if you 
begin production.”

Begin Production Cancel Production

If, on the other hand, the tutorial practice task was worded in numerical format, as “Artemis suggests here 
is a 75-percent probability this film would do well if you begin production,” then:

Congruent format:

Participants Shown: “Artemis suggests there is a 75-percent probability this film would do well if you begin 
production.”

OR

Incongruent format:

Participants Shown: “Artemis suggests it is likely this film would do well if you begin production.”

Begin Production Cancel Production
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Appendix 5: Study Set 1, 
Self-Assessed Expertise

I am an Expert at discerning film posters for production. [Likert Scale, 1-7, Disagree to Agree]

I am better than average at discerning film posters for film production. [Likert Scale, 1-7, Disagree to Agree]

I am good at discerning film posters for film production. [Likert Scale, 1-7, Disagree to Agree]

Variable Description Experiment 1 Experiment 2

Self-Assessed Expertise Expert 5.14 (0.19) 5.38 (0.15)

Nonexpert 1.60 (0.18) 1.97 (0.16)
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Appendix 6: Study Set 1, 
Demographics

 

Distribution of Survey Responses

Variable Description Diagnostic Test Experiment 1 Experiment 2

Gender Male 44.14% 47.57% 41.40%

Female 53.15% 51.46% 57.96%

Other 2.70% 0.97% 0.64%

Age Age group of participants:

18-25 18.92% 9.71% 13.38%

26-35 41.44% 30.10% 39.49%

36-45 20.72% 29.13% 26.11%

46-55 7.21% 22.33% 13.38%

46-65 9.01% 3.88% 5.10%

66 and above 2.70% 4.85% 2.55%
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Appendix 7: Study Set 2, 
Experiment 1, Study Instructions

 

Introduction

Thank you for agreeing to participate in this survey. Pretesting has shown that the total time for this survey 
ranges between 10 and 20 minutes depending on how long you choose to spend on each of the tasks.

Please complete this survey using a laptop, desktop, or tablet computer with a reasonably large screen. It is 
nearly impossible to complete using a mobile/smartphone.

The instruction pages require you to spend a minimum of 20 seconds before you can proceed to the next 
page. Once the 20 seconds have elapsed an arrow --> will appear such as the one you see in the lower-right 
corner of the page.

It is extremely important that you take this survey without assistance from others. We want your individual 
responses. Also, it is also important that you not share your experience or answers with others. Sharing will 
undermine the validity of the study. Please acknowledge you will answer the survey without information 
or assistance from others.

Task Background

Counting (e.g., people, cars, etc.) is a tedious but necessary task many analysts perform at some point in 
their careers. We have developed an artificial intelligence (AI) agent to assist with this. The idea is that, if an 
AI agent can count entities for you, this frees you to perform more interesting tasks. The agent we designed 
employs the latest algorithms, and if widely available would be a significant advancement over existing 
tools. Specifically, in this task we are testing how the AI agent performs when counting a type of vehicle 
(four-door sedans), although it could be used to count anything once properly calibrated.

Task Overview

We will show you four static images, each with several cars either parked or in motion. We want you to 
count the number of four-door sedans in the image. Feel free to use scratch paper if you need it to help 
keep track. Once you complete your count you will be asked to provide your assessed number of four-door 
sedans on the following page.
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During the task our AI agent will also assess the number of four-door sedans using its algorithm. The algo-
rithm itself is actually comprised of six different models, and relies on training data regarding vehicles as 
well as various contextual clues. The AI agent does not know the actual number of four-door sedans, and is 
working with the same information that you have. After the AI agent has finished calculating, it will provide 
its recommendation, and you may use this information in your own assessment if you wish. We will ask you 
questions at the end of the survey that capture whether you relied on the AI agent or not. Again, it is your 
choice whether you rely on the AI agent’s assessment or not.

You will not be paid for this task. However, at the conclusion of our research we will make available a copy 
of any resulting publication. Note that all your responses will be anonymous from our perspective.

Target Examples

On the next page we will show you a picture of what you will be asked to count.

Below is an example of a four-door sedan. We are asking you to count how many of these you identify in 
each image.

Four-door sedan:

However, note there are also two-door sedans (shown below), hatchbacks of two- (not shown) and four-
door variety (shown below), as well as trucks (not shown), vans (not shown), and other vehicle types (not 
shown). Be mindful to count only vehicles you think are four-door sedans. Take a moment now to 
familiarize yourself with the similarities and differences.
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Two-door sedan:

Four-door hatchback:
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Below, is an example of the type of image you will see. Remember, in this study we wish to know how many 
four-door sedans you can find.

Source: “Parking lot of Restaurante Mar y Tierra Veleiros, Jalisco, Mexico,” Google Maps, accessed on March 14, 2021, https://www.google.
com/maps/@20.709417,-103.41092,45m/data=!3m1!1e3.

At the same time that you view the image, the AI will also view it and assess the number of four-door sedans 
using its algorithm. As stated before, the AI agent’s algorithm considers a training data set as well as various 
image-specific contextual factors such as size, shape, and shadow, and calculates six models each with its 
own recommended number. The AI agent selects the model with the best “fit” to the data, and provides 
you its own assessment (count of the number of four-door sedans). It is up to you how much you use the 
AI agent’s assessment. We will ask you questions at the end of the survey to capture how much you chose 
to rely on it.

Acknowledge you understand the instructions and click --> to advance to the next page and see this in action.

https://www.google.com/maps/@20.709417,-103.41092,45m/data=!3m1!1e3
https://www.google.com/maps/@20.709417,-103.41092,45m/data=!3m1!1e3
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Appendix 8: Study Set 2, 
Self-Assessed AI Reliance

α = 0.84 

Rely A: I relied on the AI Agent’s recommendations. [Likert Scale, 1-7, Disagree to Agree]

Rely B: It is a good idea to use the information provided by the AI agent in your own assessment. [Likert 
Scale, 1-7, Disagree to Agree]

Rely C: Someone would do well to rely on the AI agent’s recommendations. [Likert Scale, 1-7, Disagree 
to Agree]

Rely D: The AI agent was a reliable source of information. [Likert Scale, 1-7, Disagree to Agree]

Variable Description Experiment 1 Experiment 2

Self-Assessed AI Reliance Low Complexity 3 .72 (0 .14) 3 .90 (0 .13)

High Complexity 3 .35 (0 .13) 3 .30 (0 .13)
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Appendix 9: Study Set 2, 
Participant Demographics and 
Self-Assessed Expertise

 

Variable Description Experiment 1 Experiment 2

Sample Size Number of Study Participants 75 124

Gender Male 63.83% 50.00%

Female 36.17% 50.00%

Other 0.00% 0.00%

Age Average Participant Age 37.77 (10.61) 40.06 (12.18)

Experience Experience in Assessed Domain (Years) 8.16 (7.28) 14.70 (12.11)

Self-assessed Expertise Likert Scale, 1-7, Inexperienced to Experienced 5.36 (1.79) 5.00 (2.04)
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Appendix 10: Study Set 1, 
Experiment 1, ANOVA Results 
(Agreements)

Omnibus Test for Production Decision Predicted by UI Settings

Effect (Type III) Num DF Den DF F Value Pr > F

Congruency Condition 1 515 6.41 0.012

Expertise Level 1 515 4.72 0.038

Expertise*Congruency 1 515 4.01 0.068

Table of Means

Expertise UI Settings Estimate SE DF t Value Pr > |t|

Congruent Expert 3.722 0.244 515 15.28 <.001

Congruent Nonexpert 3.787 0.232 515 16.32 <.001

Incongruent Expert 3.902 0.261 515 14.94 <.001

Incongruent Nonexpert 4.905 0.287 515 17.10 <.001

Table of Comparison of Means

Expertise UI Settings Expertise UI Settings Estimate SE DF t Value Pr > |t|

Congruent Expert Congruent Nonexpert -0.065 0.337 515 -0.19 0.848

Congruent Expert Incongruent Expert -0.180 0.357 515 -0.50 0.615

Congruent Expert Incongruent Nonexpert -1.183 0.377 515 -3.14 0.002

Congruent Nonexpert Incongruent Expert -0.115 0.349 515 -0.33 0.743

Congruent Nonexpert Incongruent Nonexpert -1.118 0.369 515 -3.03 0.003

Incongruent Expert Incongruent Nonexpert -1.003 0.388 515 -2.59 0.010
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Appendix 11: Study Set 1, 
Experiment 2, Reliance  
Measures and Mediation Results

Behavioral Questions Regarding Reliance About the Task:

Reliance, α = 0.84

Reliance A: The provided recommendation informed my choice. [Likert Scale, 1-7, Disagree to Agree]

Reliance B: I accepted the provided recommendation. [Likert Scale, 1-7, Disagree to Agree]

Reliance C: The provided recommendation gave me an idea whether to produce the movie. [Likert Scale, 
1-7, Disagree to Agree]

Mediation Analysis:

1.13***

-0.07

-0.05

0.09***

0.21*

0.10

-0.11

-0
.5

8

-0.16

-0
.2

1*

Expertise

Expertise X
Congruency

Congruency

Reliance

Score

Significance at certain levels of confidence:
* ≤ 0.10, ** ≤ 0.05, *** ≤ 0.01
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Appendix 12: Study Set 1, 
Experiment 2, Self-Confidence 
Measures

Behavioral Questions Regarding Self-Confidence About the Task:

Confidence, α = 0.89 

I was good at this task. [Likert Scale, 1-7, Disagree to Agree]

My choices were well-informed. [Likert Scale, 1-7, Disagree to Agree]

I knew what I was doing. [Likert Scale, 1-7, Disagree to Agree]

I was confident about the decisions I made. [Likert Scale, 1-7, Disagree to Agree]

I knew which choices to make. [Likert Scale, 1-7, Disagree to Agree]
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Appendix 13: Study Set 1, 
Experiment 2, ANOVA Results 
(Agreements)

Omnibus Test

Effect (Type III) Num DF Den DF F Value Pr > F

UI Settings 1 785 1.23 0.267

Expertise Level 1 785 0.38 0.536

Expertise*UI Settings 1 785 4.00 0.046

Table of Means

Expertise UI Settings Estimate SE DF t Value Pr > |t|

Expert Congruent 4.4106 0.2322 785 28.19 <.0001 4.4106 0.2322

Expert Incongruent 4.2126 0.2051 785 29.53 <.0001 4.2126 0.2051

Nonexpert Congruent 3.8524 0.2110 785 24.62 <.0001 3.8524 0.2110

Nonexpert Incongruent 4.5242 0.2280 785 29.95 <.0001 4.5242 0.2280

Table of Comparison of Means

Expertise UI Settings Expertise UI Settings Estimate SE DF t Value Pr > |t|

Expert Congruent Expert Incongruent 0.0459 0.072 785 0.64 0.522

Expert Congruent Nonexpert Congruent 0.135 0.0760 785 1.78 0.075

Expert Congruent Nonexpert Incongruent -0.025 0.073 785 -0.35 0.727

Expert Incongruent Nonexpert Congruent 0.089 0.073 785 1.22 0.223

Expert Incongruent Nonexpert Incongruent -0.071 0.070 785 -1.02 0.309

Nonexpert Congruent Nonexpert Incongruent -0.161 0.074 785 -2.16 0.031
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Appendix 14: Study Set 2, 
Experiment 1, ANOVA Results 
(Accuracy)

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

Explainability Level 1 45 5.37 0.0251

Condition*Choice Least Squares Means

Explainability Level DF t Value Pr > |t| Mean SE

Low Explainability 45 16.11 <.0001 6.06 0.6779

High Explainability 45 9.28 <.0001 3.9432 0.5829

Cohen’s d = 3.35
rYλ = 0.86
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Appendix 15: Study Set 2, 
Experiment 1, Actual AI 
Reliance Compared to 
Self-Assessed AI Reliance 

 
 

Actual Reliance on the AI Recommendation

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

Explainability Level 1 45 1.32 0.2574

Condition Least Squares Means

Complexity Level (0 = Simple, 1 = Complex) RUN DF t Value Pr > |t| Mean SE

Low Explainability 45 17.4 <.0001 6.01 0.6194

High Explainability 45 13.4 <.0001 5.0114 0.603

Self-Assessed Reliance on the AI Recommendation

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

Explainability Level 1 45 3.64 0.0627

Condition Least Squares Means

Explainability Level DF t Value Pr > |t| Mean SE

Low Explainability 45 35.21 <.0001 3.72 0.1388

High Explainability 45 30.41 <.0001 3.3523 0.1333

Cohen’s d = 2.74
rYλ = 0.81
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Appendix 16: Study Set 2, 
Experiment 2, ANOVA Results 
(Accuracy)

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

Explainability Level 1 68 7.45 0.0081

Choice 1 68 2.16 0.1459

Explainability Level*Choice 1 68 9.62 0.0028

Condition*Choice Least Squares Means

Explainability Level Choice DF t Value Pr > |t| Mean SE

Low Explainability No choice 68 18.31 <.0001 4.825 0.4146

Choice 68 20.68 <.0001 3.3548 0.1964

High Explainability
 

No choice 68 12.13 <.0001 3.0357 0.278

Choice 68 15.92 <.0001 3.4559 0.2691

Smallest Cohen’s d (Comparison from Low Explainability – No-choice) = 3.88
rYλ = 0.89
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Appendix 17: Study Set 2, 
Experiment 2, Actual AI 
Reliance Compared to 
Self-Assessed AI Reliance 

 
 

Actual Reliance on the AI Recommendation

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

Explainability Level 1 68 0.08 0.7777

Choice 1 68 0.51 0.4774

Explainability*Choice 1 68 0.68 0.4121

Explainability Level*Choice Least Squares Means

Explainability Level Choice DF t Value Pr > |t| Mean SE

High Explainability Choice 68 12.65 <.0001 3.5588 0.3571

No choice 68 11.31 <.0001 3.5179 0.3912

Low Explainability
 

Choice 68 15.87 <.0001 3.3629 0.257

No choice 68 11.06 <.0001 3.95 0.4905

Self-Assessed AI Reliance on the AI Recommendation

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

Explainability Level 1 67 11.24 0.0013

Choice 1 67 33.86 <.0001

Explainability*Choice 1 67 0.34 0.5609
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Condition Least Squares Means

Explainability Level Estimate Standard DF t Value Pr > |t|

Low Explainability 3.8981 0.1238 67 31.49 <.0001

High Explainability 3.2966 0.1299 67 25.39 <.0001

Cohen’s d = 4.80
rYλ = 0.92

Choice Least Squares Means

Choice Estimate Standard DF t Value Pr > |t|

Choice 4.1193 0.1035 67 39.8 <.0001

No choice 3.0754 0.1465 67 20.99 <.0001

Cohen’s d = 8.16
rYλ = 0.97

Explainability Level*Choice Least Squares Means

Explainability Level Choice DF t Value Pr > |t| Mean SE

High Explainability Choice 4.3676 0.1664 67 26.26 <.0001

No choice 3.4286 0.1833 67 18.7 <.0001

Low Explainability
 

Choice 3.871 0.1232 67 31.42 <.0001

No choice 2.7222 0.2286 67 11.91 <.0001

Smallest Cohen’s d (Comparison from High Explainability – Choice) = 1.53
rYλ = 0.61
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Appendix 18: Study Set 2, 
Experiments 1-2, 
Task Engagement

 

Panel 1: Experiment 1 Task Engagement

Assigned Completed

Low Explainability 37 25 (67.57%)

High Explainability 38 22 (57.89%)

Totals 75 47

χ2(0.75, n = 75) = 0.39

Panel 2: Experiment 2 Task Engagement

Completed by Explainability Level

Assigned High Low Total

Choice 62 17 38 55 (88.71%)

No choice 62 14 14 28 (45.16%)

Totals 124 31 52 83

χ2(26.56, n = 124) < 0.001
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